圓錐的體積教案
在教學工作者開展教學活動前,通常需要用到教案來輔助教學,借助教案可以更好地組織教學活動。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的圓錐的體積教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
圓錐的體積教案1
教學目標:
1、通過實驗發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發(fā)現(xiàn)的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,感受數(shù)學方法的內(nèi)在魅力,激發(fā)學生參加探索的興趣。
教學重點: 通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
教學過程:
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么? (指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
。1)、你認為圓錐體積的大小與它的什么有關?
。2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
。1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒?jié)M?
。2)、通過實驗,你發(fā)現(xiàn)了什么?
小結(jié):通過實驗我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。
3、教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的'?纯磮A柱和圓錐有什么相同的地方?(等底等高)請同學們注意觀察, 用圓錐裝滿水往圓柱里倒,倒幾次才把圓柱倒?jié)M?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)
師:用字母應該怎樣表示? (V=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
一個圓柱形零件,底面積是170平方厘米,高是12厘米。這個零件的體積是多少立方厘米?
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結(jié)
通過這節(jié)課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示V=1/3sh
圓錐的體積教案2
教學內(nèi)容
教科書第39~40頁例1,課堂活動及練習九第1題,第2題。
1.在操作和探究中理解并掌握圓錐的體積計算公式。
2.引導學生探究、發(fā)現(xiàn),培養(yǎng)學生的觀察、歸納等能力。
3.在實驗中,培養(yǎng)學生的數(shù)學興趣,發(fā)展學生的空間觀念。
一、圓錐體積的計算公式的推導過程。
圓錐體積計算公式的理解。
小黑板、等底等高的圓柱和圓錐、圓柱形水槽、河沙或水。一、情景鋪墊,引入課題
教師出示小黑板畫面,畫面中兩個小孩正在商店里買蛋糕,蛋糕有圓柱形和圓錐形兩種。圓柱形蛋糕的標簽上寫著底面積16CM2,高20CM,單價:40元/個;圓錐形的蛋糕標簽上寫著底面積16CM2,高60CM,單價:40元/個。
屏幕上出示問題:到底選哪種蛋糕劃算呢?
教師:圖上的兩個小朋友在做什么?他們遇到什么困難了?他們應該選哪種蛋糕劃算呢?誰能幫他們解決這個問題?
教師抽學生回答問題。
可能會出現(xiàn)以下幾種情形:
第一種學生會認為買圓柱形的蛋糕比較劃算,理由是這種蛋糕比圓錐形蛋糕的個大。
第二種學生會認為買圓錐形的蛋糕比較劃算,理由是這種蛋糕比圓柱形蛋糕高。
第三種學生會認為不能確定,理由是不知道誰的體積大,無法比較。
教師:看來要幫助這兩個同學不是一件容易的事情,解決這個問題的關鍵在哪里?
學生明白首先要求出圓錐形蛋糕的體積。
教師:怎樣計算圓錐的體積?這節(jié)課我們一起研究圓錐體積的計算方法。
揭示課題。板書課題:圓錐的體積
二、自主探究,感悟新知
1.提出猜想,大膽質(zhì)疑
教師:誰來猜猜圓錐的體積怎么算?
學生猜測:圓柱和圓錐的底面都是圓的,它們之間可能有聯(lián)系,可不可以把圓錐變成圓柱,求出圓柱的體積,從而得出圓錐的體積……
對學生的各種猜想,教師給予肯定和表揚。
2.分組合作,動手實驗
教師:圓錐的體積和圓柱的體積之間究竟有沒有關系呢?如果有關系的話,它們之間又是一種什么關系?通過什么辦法才能找到它們之間的關系呢?帶著這些問題,請同學們分組研究,通過實驗尋找答案。
教師布置任務并提出要求。
每個小組的桌上都有準備好的器材:等底等高空心的或?qū)嵭牡膱A柱和圓錐、河沙或水、水槽等不同的器材,以及一張可供選用的實驗報告單。四人小組的成員分工合作,利用提供的器材共同想辦法解決問題,找出圓錐體積的計算方法。并可根據(jù)小組研究方法填寫實驗報告單。
學生小組合作探究,教師巡視指導,參與學生的活動。
3.教師用投影儀展示實驗報告單
圓錐的體積實驗報告單
第()小組記錄人:
名稱底面半徑最初水面高度最后水面高度水面上升高度體積
圓柱
圓錐
結(jié)論
反饋信息。各小組交流實驗方法和結(jié)果。
教師:你們采用了哪些方法研究等底等高的圓柱和圓錐之間的關系?通過實驗,你們發(fā)現(xiàn)了什么?
方案一:用空心的圓錐裝滿水,再把水倒在與這個圓錐等底等高的空心圓柱形容器中,倒了三次,剛好裝滿圓柱形容器,因為圓柱的體積=底面積×高,所以圓錐的體積=13×圓柱的體積。
方案二:方法與一小組的方法基本一樣,只不過裝的是河沙。我們的結(jié)論和一小組一樣,圓錐的體積也是這個等底等高圓柱體積的三分之一。
方案三:我們組與前兩小組的方法不一樣。我們是用兩個同樣大的水槽裝同樣多的水,在水面的位置分別作好標記,然后把這兩個實心的圓柱和圓錐分別放入兩個水槽中,在升高后的水面分別作好標記,算出兩個水槽水面上升的高度,發(fā)現(xiàn)放圓柱形水槽的水面上升的高度是放圓錐形水槽水面高度的三倍。因為兩個水槽底面一樣大也就是底面積相等,由圓柱的體積計算公式算出兩個水槽中水的體積,發(fā)現(xiàn)圓錐的體積是圓柱的體積的三分之一。因此我們組得出的結(jié)論是:圓錐的體積是與它等底等高圓柱體積的三分之一。
教師:三個小組采用的實驗方法不一樣,得出的結(jié)論都一樣。老師為你們的探索精神感到驕傲。
教師把學生們的實驗過程用小黑板演示一遍,讓學生再經(jīng)歷一次圓錐體積的探究過程。
4.公式推導
教師:圓柱的體積怎樣計算?圓錐的體積又怎樣計算?
教師引導學生理解只要求出與這個圓錐等底等高的圓柱的體積,再乘以三分之一,就得到圓錐的體積。
板書:圓柱的體積=底面積×高
V=S×H
↓〖4↓〖6↓
圓錐的體積=13×底面積×高
V=13×S×H
教師:圓柱的體積用字母V表示,圓錐的體積也用字母V表示。怎樣用字母表示圓錐的體積公式?
抽學生回答,教師板書:V=13SH
教師引導學生理解公式,弄清公式中的S表示什么,H表示什么。
要求學生閱讀教科書第39頁和第40頁例1前的內(nèi)容。勾畫出你認為重要的`語句,并說說理由。
5.拓展
教師:是不是底和高不相等的圓錐體積也是圓柱體積的三分之一呢?我們來做個實驗。
教師利用學生的實驗器材進行演示。
用兩個等底不等高的圓柱和圓錐裝水;再用兩個等高不等底的圓柱和圓錐裝水,兩次結(jié)果都沒得到圓錐體積是圓柱體積的三分之一,進一步讓學生體會等底等高的含義。
6.運用所學知識解決問題
教學例1。
一個鉛錘高6CM,底面半徑4CM。這個鉛錘的體積是多少立方厘米?
學生讀題,找出題中的條件和問題。
引導學生弄清鉛錘的形狀是圓錐形。
學生獨立解答。抽學生上臺展示解答情況并說出思考過程。
三、拓展應用,鞏固新知
1.教科書第42頁第1題
學生獨立解答,集體訂正。
2.填一填
(1)圓柱的體積字母表達式是(),圓錐的體積字母表達式是()。
(2)等底等高的圓柱的體積是圓錐體積的()倍。
抽生回答,熟悉圓錐的體積計算公式。
3.把下列表格補充完整
形狀底面積S(M2)高H(M)體積V(M3)
圓錐159
圓柱160.6
學生在解答時,教師巡視指導。
4.教科書第42頁練習九第2題
分組解答,抽生板算。教師帶領學生集體訂正。
5.應用公式解決實際問題
教師:現(xiàn)在我們再來幫助這兩個同學解決他們的難題。
要求學生獨立解答新課前買蛋糕的問題。
抽學生說出計算的結(jié)果。明白兩個蛋糕的體積一樣大,因此買兩種形狀的蛋糕都可以。
教師引導學生明白生活中的許多現(xiàn)象中都藏著數(shù)學問題,只要留心觀察就能得出結(jié)論。這節(jié)課的學習中,你都有哪些收獲?有關圓錐體積的知識還有哪些不清楚的?
圓錐的體積教案3
教學目標:
1、通過動手操作實驗,推導出圓錐體體積的計算公式。
2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
3、通過學生動腦、動手,培養(yǎng)學生的觀察、分析的綜合能力。
教具準備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。
教學過程設計:
一、復習舊知,做好鋪墊。
1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)
2、口算下列圓柱的體積。
(1)底面積是5平方厘米,高 6 厘米,體積 = ?
(2)底面半徑是 2 分米,高10分米,體積 = ?
(3)底面直徑是 6 分米,高10分米,體積 = ?
3、認識圓錐(課件演示),并說出有什么特征?
二、溝通知識、探索新知。
教師導入:同學們,我們已經(jīng)認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們?nèi)W習、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)
1、探討圓錐的體積計算公式。
教師:怎樣推導圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積計算公式的?
學生回答,教師板書:
圓柱------(轉(zhuǎn)化)------長方體
圓柱體積計算公式--------(推導)長方體體積計算公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。
(1)提問學生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關系?)
(學生得出:底面積相等,高也相等。)
教師:底面積相等,高也相等,用數(shù)學語言說就叫“等底等高”。
(板書:等底等高)
(2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?
(不行,因為圓錐體的體積小)
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關系?(指名發(fā)言)
用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關系。
(3)學生分組做實驗,并借助課件演示。
(教師深入小組中了解活動情況,對個別小組予以適當?shù)膸椭?
a、誰來匯報一下,你們組是怎樣做實驗的?
b、你們做實驗的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關系?
(學生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
教師:同學們得出這個結(jié)論非常重要,其他組也是這樣的嗎?
學生回答后,教師用教學課件演示實驗的全過程,并啟發(fā)學生在小組內(nèi)有條理地表述圓錐體體積計算公式的推導過程。
(板書圓錐體體積計算公式)
教師:我們學過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)
(4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發(fā)現(xiàn)什么?
學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)
為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因為是等底等高的圓柱體和圓錐體。)
(教師給體積公式與“等底等高”四個字上連線。)
進一步完善體積計算公式:
圓錐的體積=等底等高的圓柱體體積×1/3
=底面積 × 高×1/3
V = 1/3Sh
教師:現(xiàn)在我們得到的這個結(jié)論就更完整了。(指名反復敘述公式。)
課件出示:
想一想,討論一下:?
(1)通過剛才的'實驗,你發(fā)現(xiàn)了什么?
(2)要求圓錐的體積必須知道什么?
學生后討論回答。
三、 應用求體積、解決問題。
1、口答。
(1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學生讀題,理解題意,自己解決問題。
例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?
a、 學生完成后,進行小組交流。
b 、 你是怎樣想的和怎樣解決問題的。(提問學生多人)
c 、 教師板書:
1/3×19×12=76(立方厘米)
答:它的體積是76立方厘米
3 、練習題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)
我們已經(jīng)學會了求圓錐體的體積,現(xiàn)在我們來解決有關圓錐體體積的問題。
4、出示例2:要求學生自己讀題,理解題意。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)
(1)提問:從題目中你知道了什么?
(2)學生獨立完成后教師提問,并回答學生的質(zhì)疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
5、比較:例1和例2有什么不同的地方?
(1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。
圓錐的體積教案4
教學目標
1、通過動手操作實驗,推導出圓錐體體積的計算方法,并能運用公式計算圓錐體的體積。
2、通過學生動腦、動手,培養(yǎng)學生的思維能力和空間想象能力。
教學重點和難點
圓錐體體積公式的推導。
教學過程設計
(一)復習準備
我們每組桌上都擺著幾何形體,哪種形體的體積我們已經(jīng)學過了?舉起來。
這是什么體?(圓錐體)
(板書:圓錐)
上節(jié)課我們已經(jīng)認識了圓錐體,這里有幾個畫好的幾何形體。
(出示幻燈)
一起說,幾號圖形是圓錐體?(2號)
(指著圓錐體的底面)這部分是圓錐體的什么?(底面)
(指著頂點)這呢?
哪是圓錐體的高?(指名回答。)
(用幻燈出示幾個圖形。)
在這幾個圓錐體中,幾號線段是圓錐體的高,就舉幾號卡片。
(學生舉卡片反饋)
你為什么選2號線段呢?為什么不選3號、4號呢?(指名回答)
那么這個圓錐體的高在哪呢?(在幻燈上打出圓錐體的高。)
看來,同學們對于圓錐體的特征掌握得很好,這節(jié)課我們就重點研究圓錐的體積。
(板書,在“圓錐”二字的后面寫“的體積”。)
(復習內(nèi)容緊扣重點,由實物到實間圖形,采用對比的方法,不斷加深學生對形體的認識。)
(二)學習新課
(老師拿出一大一小兩個圓錐體問學生)這兩個圓錐體哪個體積大,哪個體積小?
(再拿出不等底、不等高,但體積相等的一個圓柱體和一個圓錐體)這兩個形體哪個體積大,哪個體積?(引起學生爭論,說法不一。)
看來我們只憑眼睛看是不能準確地得出誰的體積大,誰的體積小,必須通過測量計算出它們的體積。圓柱體的體積我們已經(jīng)學過了,等我們學完了圓錐的體積再來解決這個問題。
為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?
(學生得出:底面積相等,高也相等。)
底面積相等,高也相等,用數(shù)學語言說就叫“等底等高”。
(板書:等底等高)
既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?(不行)
為什么?(因為圓錐體的體積小)
(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關系?(指名發(fā)言)
的大米、水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關系。注意,用大米做實驗的同學不要浪費一粒糧食。
(學生分組做實驗。)
誰來匯報一下,你們組是怎樣做實驗的?
你們做實驗的圓柱體和圓錐體在體積大小上有什么倍數(shù)關系?
(學生發(fā)言。)
同學們得出這個結(jié)論非常重要,其他組也是這樣的嗎?
我們學過用字母表示數(shù),誰來把這個公式整理一下?(指名發(fā)言)
(不是)
是啊,(老師拿起一個小圓錐、一個大圓柱)如果老師把這個大圓錐體里裝滿了米,往這個小圓柱體里倒,倒三次能倒?jié)M嗎?(不能)
為什么你們做實驗的圓錐體里裝滿了水或米往圓柱體里倒,倒三次能倒?jié)M呢?
(因為是等底等高的圓柱體和圓錐體。)
呢?(在等底等高的情況下。)
(老師在體積公式與“等底等高”四個字上連線。)
現(xiàn)在我們得到的這個結(jié)論就更完整了。(指名反復敘述公式。)
今后我們求圓錐體體積就用這種方法來計算。
(老師在教學中,注意調(diào)動學生的學習積極性,采用分組觀察,操作,討論等方法,突出了學生的主體作用。)
(三)鞏固反饋
1、口答。
填空:
2、板書例題。
例一個圓錐體,它的底面積10cm,高6cm,它的體積是多少?
(指名回答,老師板書。)
=20(cm)
答:它的體積是20cm。
3、練習題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)
4、我們已經(jīng)學會了求圓錐體的體積,現(xiàn)在我們會求前面遺留問題中的比大小的圓錐體體積了。
(幻燈出示其中之一)這個圓錐體,直徑為10cm,高為12cm,求體積。
(學生在小黑板上只寫結(jié)果,舉黑板反饋。)
你們求出這個圓錐體的體積是314cm,F(xiàn)在告訴你們另一個圓柱體的體積我已經(jīng)計算出來了,它的體積也是314cm。這兩個形體體積怎樣?(一樣)剛才我們留下的問題就解決了,看來判斷問題必須要有科學依據(jù)。
5、選擇題。每道題下面有3個答案,你認為哪個答案正確就舉起幾號卡片。
(1)一個圓錐體的體積是a(dm),和它等底等高的圓柱體體積是()(dm)。
②3a(dm)
、踑3(dm)
(舉卡片反饋,訂正。)
(2)把一段圓鋼切削成一個最大的圓錐體,圓柱體體積是6cm,圓錐體體積是()cm。
(學生舉卡片反饋,訂正。)
6、剛才都是老師給你們數(shù)據(jù),求圓錐體體積,你們能不能直接告訴我你們桌上的圓錐體體積是多少呢?(不能)
為什么?(因為不知道底面積和高。)
需要測量什么?(底面半徑和高。)
怎么測量?(小組討論。)
(指名發(fā)言)
今天回家后,把你們測量的數(shù)據(jù)寫在本子上,再計算出體積。
這節(jié)課我們學了什么知識?
出思考題:
現(xiàn)在我們比一比誰的空間想象能力強。
看看我們的教室是什么體?(長方體)
要在我們的教室里放一個盡可能大的圓錐體,想一想,怎樣放體積最大?(小組討論)
指名發(fā)言。當爭論不出結(jié)果時,老師給數(shù)據(jù):教室長12m,寬6m,高4m。并板書出來,再比較怎樣放體積最大。
(四)指導看書,布置作業(yè)
(略)
課堂教學設計說明
本節(jié)課的主要特點有以下幾點:
一是始終注意激發(fā)學生的'求知欲。新課一開始就讓學生觀察,猜測兩組圓錐的大小,激發(fā)學習的欲望。在公式推導過程當中又引導學生估計兩個等底等高的圓柱和圓錐的體積之間的倍數(shù)關系,使學生的學習興趣進一步高漲。在應用公式的教學中,又把問題轉(zhuǎn)向了課初學生猜測體積大小的兩個圓錐,并引導學生邊測量,邊計算,終于使懸念得出了滿意的結(jié)果,使學生獲得了成功的喜悅。
二是在教學中重視以學生為學習活動的主體,整個公式的推導,是建立在學生分組觀察、實驗操作、測量的基礎上的,學生不僅參與了獲取知識的全過程,更重要的是參與了獲取知識的思維過程。
三是教學層次清楚,步步深入,重點突出。
四是練習有坡度,形式多,教學反饋及時、準確、全面、有效。
圓錐的體積教案5
教學目標
1.理解求圓錐體積的計算公式。
2.會運用公式計算圓錐的體積。
3.培養(yǎng)同學們初步的空間觀念和思維能力;讓同學們認識轉(zhuǎn)化的思考方法。
教學重點
圓錐體體積計算公式的推導過程。
教學難點
正確理解圓錐體積計算公式。
教學過程
一、鋪墊孕伏
1.提問:
。1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側(cè)面和高。
2.導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題。(板書:圓錐的'體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式
1.教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法。老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土。實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里。倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2.學生分組實驗。
學生匯報實驗結(jié)果:
①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿。
②圓柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿。
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿。
4.引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 。
板書:
5.推導圓錐的體積公式:用字母表示圓錐的體積公式.板書: 。
6.思考:要求圓錐的體積,必須知道哪兩個條件?
7.反饋練習
圓錐的底面積是5,高是3,體積是( )。
圓錐的底面積是10,高是9,體積是( )。
。ǘ┧阋凰
學生獨立計算,集體訂正。
說說解題方法。
三、全課小結(jié)
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
圓錐的體積教案6
一、學習內(nèi)容:
教師提供小學數(shù)學六年級下冊14頁----17頁。
二、學生提供:
等底等高的圓柱和圓錐教學用具各一個,小水盆,一些綠豆。
三、學習目標:
1、結(jié)合具體情景和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。
2、經(jīng)歷“類比猜想---驗證說明”的探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并解決一些簡單的實際問題。
四、重點難點:
重點:圓錐的體積計算。
難點圓錐的體積公式推導。
關鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。
五、學習準備:
等底等高的圓柱和圓錐教學用具各一個,一個三角形和一個長方形。
看看你們能不能發(fā)現(xiàn)這兩個圖形之間隱藏的關系?你有什么發(fā)現(xiàn)?
長方形的長等于三角形的底,長方形的寬等于三角形的高。
你的發(fā)現(xiàn)真了不起。這種情況在數(shù)學中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關系呢?
三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。
六、布置課前預習
點撥自學
1、圓柱和圓錐有哪些相同的地方?
2、圓柱和圓錐有哪些不同的地方?
3、圓錐的體積和圓柱的體積有什么關系呢?
請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲!按照預習中學生存在的問題,教師加以點撥。
七、交流解惑:
它們的底面積相等,高也相等
圓柱有無數(shù)條高,圓錐只有一條高。圓錐體積比圓柱小……
動手做實驗:把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。
通過實驗操作,得出了正確的`科學的結(jié)論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。組內(nèi)交流
組際解疑
老師點撥
八、合作考試
1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)
2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底面半徑約3分米,高約2.7分米,求沙堆的體積。
。ㄖ涣惺讲挥嬎悖
3、在打谷場上,有一個近似于圓錐的小麥堆,測底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?
。ㄖ涣惺讲挥嬎悖
4、如圖,求這枝大筆的體積。
。▎挝唬豪迕祝
。ㄖ涣惺讲挥嬎悖
5、將一個底面半徑是2分米,高是4分米的圓柱形木塊,削成一個最大的圓錐,那么削去的體積是多少立方分米?(口算)
九、自我總結(jié):
通過今天的學習,我學會了,以后我會在方面更加努力的。
十、教學反思:
本節(jié)課通過交流、問答、猜想等形式,調(diào)動學生學習的積極性,激發(fā)學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣極高,在實驗過程中通過學生的親身體驗知識的探究的過程,加深學生對所學知識的理解,學生學習的積極性被調(diào)動起來了,學生學得輕松、愉快。充分讓學生體會到了等底等高的圓錐的體積是圓柱的三分之一。
圓錐的體積教案7
教學內(nèi)容:教材第20頁例2、練一練。
教學要求:使學生進-步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應用圓錐體積公式解決-些簡單的實際問題:
教學重點:進-步掌握圓錐的體積計算方法。
教學難點:根據(jù)不同的條件計算圓錐的體積。
教學過程:
一.鋪墊孕伏:
1.口算。
2.復習體積計算。
(1)提問:圓錐的體積怎樣計算?
(2)口答下列各圓錐的體積:①底面積3平方分米,高2分米。
②底面積4平方厘米,高4.5厘米。
3.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的.實際問題。
二、自主探究:
l.教學例2。
出示例題,讓學生讀題。提問:你們認為這道題要先求什么,再求這堆沙的重量?讓學生說說為什么要先求體積,才能求這堆沙的重量?這里底面直徑和高的數(shù)據(jù)怎樣獲得?指名板演,其他學生做在練習本上,集體訂正。
2.組織練習。
(1)做練一練。
指名一人板演,其余學生做在練習本上,集體訂正。
(2)討論練習三第6題:圓柱和圓錐的體積和高分別相等,那么,圓柱的底面積和圓錐的底面積有什么關系?這道題,已知圓柱底面的周長,先求出什么?在怎樣?理清思路后
學生做在練習本上。集體訂正。
(3)討論練習三第7題。
底面周長相等,底面積就相等嗎?
三、課堂小結(jié)
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算.有時候還可以計算出圓錐形物體的重量。
四、布置作業(yè)
1.練習三第5題及數(shù)訓。
2.出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第167頁圖制作的圓錐,求出它的體積來。
3.思考練習三第8、9題。
圓錐的體積教案8
教學目標
1、使學生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
教學重點
圓錐體體積計算公式的推導過程.
教學難點
正確理解圓錐體積計算公式.
教學步驟
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側(cè)面和高.
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
(一)指導探究圓錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結(jié)果(課件演示:圓錐體的體積1、2、3、4、5) 下載1 下載2 下載3 下載4 下載5
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
……
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的`圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 .
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是( )
圓錐的底面積是10,高是9,體積是( )
。ǘ┙虒W例1
1、例1 一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學生獨立計算,集體訂正.
板書:
答:這個零件的體積是76立方厘米.
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學例2
1、例2 在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應怎么辦?
這道題應先求什么?再求什么?最后求什么?
2、學生獨立解答,集體訂正.
板書:(1)麥堆底面積:
。3.14×4
。12.56(平方米)
。2)麥堆的體積:
12.56×1.2
。15.072(立方米)
(3)小麥的重量:
735×15.072
。11077.92
≈11078(千克)
答:這堆小麥大約重11078千克.
3、教學如何測量麥堆的底面直徑和高.
。1)啟發(fā)學生根據(jù)自己的生活經(jīng)驗來討論、談想法.
。2)教師補充介紹.
a.測量麥堆的底面直徑可以用繩子在麥堆底部圓周圍圈一圈,量得麥堆的周長,再算直徑.也可用兩根竹竿平行地放在麥堆的兩側(cè),量得兩根竹竿的距離,就是麥堆的直徑.
b.測量麥堆的高,可用兩根竹竿在麥堆旁邊組成兩個直角后量得.
三、全課小結(jié)
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、隨堂練習
1、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
。2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
2、計算并填表
3、判斷對錯,并說明理由.
。1)圓柱的體積相當于圓錐體積的3倍.( )
。2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )
五、布置作業(yè)
一堆煤成圓錐形,底面半徑是1.5米,高是1.2米.這堆煤的體積有多少立方米?如果每立方米煤約重1.4噸,這堆煤約有多少噸?
六、板書設計
數(shù)學教案-圓錐的體積
圓錐的體積教案9
教學內(nèi)容:第25~26頁,例2、例3及練習四的第3~8題。
教學目的:
1、通過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經(jīng)驗,在小組活動過程中,培養(yǎng)學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發(fā)學生的自主探索意識,發(fā)展學生的空間觀念。
教學重點:掌握圓錐體積的計算公式。
教學難點:正確探索出圓錐體積和圓柱體積之間的關系。
教學準備:圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。
教學過程:
一、復習
1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側(cè)面、高和頂點)
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。
二、新課
1、教學圓錐體積的計算公式。
(1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的.
。2)能不能也通過已學過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關?圓錐的體積該怎樣求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
。3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發(fā)現(xiàn)“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
。4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?
。ń處熥寣W生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
(5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )還可以怎么說?
板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:V=1/3Sh
拿不等底等高的圓柱與圓錐進行實驗。為什么倒3次不能剛好倒,和剛才不一樣呢?
強調(diào):“等底等高”。
問:Sh表示什么?為什么要乘1/3?
練習:一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
一個圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?
2、教學練習四第3題
。1)這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?
。2)引導學生對照圓錐體積的計算公式代入數(shù)據(jù),然后讓學生自己進行計算,做完后集體訂正。
說明:不要漏乘1/3,計算時能約分的要先約分。
3、鞏固練習:完成練習四第4題。
4、教學例3.
(1)出示例3
已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的`的體積。
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
。3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)
。4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數(shù)的取舍方法是否正確)
三、鞏固練習
1、做練習四的第7題。
學生先獨立判斷這三句話是否正確,然后全般核對評講。
2、做練習四的第8題。
(1)引導學生學生思考回答以下問題:
、 這道題已知什么?求什么?
、 求圓錐的體積必須知道什么?
、 求出這堆煤的體積后,應該怎樣計算這堆煤的重量?
(2)讓學生做在練習本上,教師巡視,做完后集體訂正。
3、做練習四的第6題。
。1)指名學生先后回答下面問題:
① 圓柱的側(cè)面積等于多少?
、 圓柱的表面積的含義是什么?怎樣計算?
③ 圓柱體積的計算公式是什么?
、 圓錐的體積公式是什么?
。2)學生把計算結(jié)果填寫在教科書第28頁的表格中,做完后集體訂正。
四、總結(jié)
這節(jié)課學習了哪些內(nèi)容?你是如何準確地記住圓錐的體積公式的?
第七課時教學反思
課件演示
俗話說“眼見為實”,所以相對于課件演示而言,教師在全班演示會更直觀,結(jié)論也更具信服性。
俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對于看教師演示與自己親自動手實驗,親身經(jīng)歷探究印象會更深刻。
課堂如果以4——6人小組為單位進行實驗,全班至少得有9套以上教具?晌倚,F(xiàn)有教具數(shù)量不夠。如果要求學生課前自制教具,他們暫時無法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學生觀察。
僅用一次實驗就得出結(jié)論是不嚴謹?shù),所以課堂上必須讓學生歷經(jīng)多次不同實驗后才能得到正確結(jié)論。根據(jù)學,F(xiàn)有教具,今天我準備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實驗中,我不僅讓學生清晰地看到將圓錐內(nèi)的水倒3次可以注滿與它等底等高的圓柱,同時,還讓他們看到圓柱內(nèi)的水再反倒回等底等高的圓錐時要倒3次。不僅自己示范演示,也讓學生參與演示實驗。最后,我還用不等底等高的圓柱與圓錐做實驗,強調(diào)實驗結(jié)果只有在“等底等高”的條件下才能成立。因為實驗環(huán)節(jié)落實較好,全班作業(yè)正確率高。
圓錐的體積教案10
教學內(nèi)容:教科書第52頁練習十二的第69題。
教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。
教學過程:
一、復習
1.圓錐的體積公式是什么?
2.填空。
。1)一個圓錐的體積是與它等底等高的圓柱體積的
。2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。
(3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。
二、課堂練習
1.做練習十二的第6題。
教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:
讓學生分組討論一下,然后各自讓一名學生說說討論的結(jié)果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板
測量出圓錐的高,這樣就可以求出圓錐的體積。
2.做練習十二的第7題。
讀題后,教師可以先后提問:
這道題已知什么?求什么?
要求這堆沙的重量,應該先求什么?怎樣求?
指名學生回答后,讓學生做在練習本上,做完后集體訂正。
3.做練習十二的第8題。
讀題后,教師可提出以下問題:
這道題要求的是什么?
要求這段鋼材重多少千克,應該先求什么?怎樣求?
能直接利用題目中的數(shù)值進行計算嗎?為什么?
題目中的單位不統(tǒng)一,應該怎樣統(tǒng)一?
分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的'結(jié)果還應把克改寫成千克。
4.做練習十二的第9題。
讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?
要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。
讓學生獨立做在練習本上,做完后集體訂正。
三、選做題
讓學有余力的學生做練習十二的第10*、11*、12*題。
1.練習十二的第10*題。
教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?
引導學生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。
2.練習十二的第11*題。
這是一道有關圓柱、圓錐體積的比例應用題。
可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。
設圓柱的高為x厘米。
=
X=9。6
。ㄗ⒁猓河捎趫A錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)
3.練習十二的第12題。
這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。
圓錐的體積教案11
教學內(nèi)容:
練習四第4~12題和第23頁思考題
教學目標:
1.使學生進步理解、掌握圓錐的體積計算方法,能根據(jù)不同的條件計算出圓錐的體積。
2.提高學生解決生活中實際問題的能力。
3.養(yǎng)成良好的學習習慣。
教學重點:
進步掌握圓錐體積的計算方法。
教學難點:
圓柱和圓錐體積之間的聯(lián)系與區(qū)別。
教學過程:
一、復習舊知
1.復習體積計算。
。1)提問:圓錐的體積怎樣計算?
。2)口答下列各圓錐的體積。
、俚酌娣e3平方分米,高2分米。
、诘酌娣e4平方厘米,高4.5厘米。
2.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。
二、教學新課
組織練習。
1.做練習四第4題。
學生獨立計算。
2.做練習四第5題。
把等底等高的圓柱體積和圓錐體積相互轉(zhuǎn)化,從已知的圓柱體積得出相應的圓錐體積,從已知的圓錐體積得出相應的圓柱體積,繼續(xù)加強對等底等高圓柱和圓錐體積關系的理解。
3.做練習四第6題。
出示第6題的圖。
引導分析:根據(jù)圖示的各個立體圖形的底面直徑與高,尋找與圓錐體積相等的。圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。
4.做練習四第7題。
(1)提問:圓錐體積最大時與圓柱的.關系是什么?(等底等高)
接著讓學生獨立練習。
。2)讓學生自主地提出其他問題,進一步的掌握圓錐和圓柱的關系。
5.做練習四第8題。
聯(lián)系實際,解決問題。
6.做練習四第9題。
讓學生動手操作,理解三角形繞它的兩條高旋轉(zhuǎn)一周形成兩個大小不同的圓錐。在此基礎上讓學生獨立計算。
7.做練習四第12題。
出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第115頁圖制作的圓錐,求出它的體積來。
三、課堂小結(jié)
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算方法,有時候還可以計算出圓錐形物休的重量。
四、布置作業(yè)
1.練習四第10.11題。
2.學有余力學生完成思考題。
圓錐的體積教案12
教學目標:
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱圓錐體積之間的關系,從而得出圓錐體積的計算公式。
2、能運用公式解答有關的實際問題。
3、滲透轉(zhuǎn)化、實驗、猜測、驗證等數(shù)學思想方法,培養(yǎng)動手能力和探索意識。
教學過程
一、創(chuàng)設情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
出示思考題:
(1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?
。2)你們的小組是怎樣進行實驗的?
1. 小組實驗。
(1)學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的,也有5倍關系的。
(2)同組的學生做完實驗后,進行交流,并把實驗結(jié)果寫在長條黑板上。
2. 大組交流。
(1)組織收集信息。
學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在插式黑板上:
① 圓柱的'體積正好是圓錐體積的3倍。
、 圓柱的體積不是圓錐體積的3倍。
、 圓柱的體積正好是圓錐體積的8倍。
④ 圓柱的體積正好是圓錐體積的5倍。
、 圓柱的體積是等底等高的圓錐體積的3倍。
⑥ 圓錐的體積是等底等高的圓柱體積的1/3 。
(2)引導整理信息。
指導學生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)
。3)參與處理信息。
圍繞3倍關系的情況討論:
、 請這幾個小組同學說出他們是怎樣通過實驗得出這一結(jié)論的?
、 哪個小組得出的結(jié)論更加科學合理一些?
圓錐的體積是等底等高的圓柱體積的1/3。
。ㄍ怀龅鹊椎雀,并請他們拿出實驗用的器材,自己比劃、驗證這個結(jié)論。)
、垡龑W生自主修正另外兩個結(jié)論。
3. 誘導反思。
(1)為什么有兩個小組實驗的結(jié)果不是3倍關系呢?
。2)把一個空心的圓錐慢慢按入等底等高且裝滿水的圓柱形容器里,剩下水的體積是多少?這時和圓柱體積有什么關系?
4. 推導公式。
嘗試運用信息推導圓錐的體積計算公式。
。1)這里Sh表示什么?為什么要乘1/3?
。2)要求圓錐體積需要知道哪兩個條件?
5. 問題解決。
童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高)之后播放狐貍拿著圓錐形雪糕離去的畫面。
三、運用公式,解決問題
1. 教學例1。一個圓錐形的零件,底面積是19平萬厘米,高是12厘米。這個零件的體積是多少?
2. 學生嘗試行算,指名板演,集體訂正。
3. 引導小結(jié):不要漏乘1/3;計算時,能約分時要先約分。
四、鞏固練習,拓展深化(略)
五、質(zhì)疑問難,總結(jié)升華
通過這節(jié)課的學習,你們探索到了什么?怎樣推導出圓錐體積公式的?
回到童話情節(jié)。我們發(fā)現(xiàn)三個圓錐形的雪糕換一個與它等底等高的圓柱形雪糕公平合理,如果狐貍只用一個圓錐形的雪糕和小白兔交換,而不使小白兔吃虧,那么圓錐形的雪糕應該是什么樣的?配合用課件演示。
圓錐的體積教案13
教學目標:
1.在理解圓錐體積公式的基礎上,能運用公式解決有關實際問題,加深對知識的理 解。
2.培養(yǎng)學生觀察、實踐能力。
3.使學生在解決實際問題中感受數(shù)學與生活的密切聯(lián)系。
教學重、難點:結(jié)合實際問題運用所學的知識
教學理念:
1.數(shù)學源于生活,高于生活。
2.學生動手實踐,自主學習與合作交流相結(jié)合
教學設計:
一 回顧舊知:
1.圓錐的體積公式是什么? S、h各表示什么?
2.求圓錐的體積需要知道什么條件?
3.還知道哪些條件也能計算出圓錐的體積?怎樣計算?
投影出示:
(1)S = 10,h = 6 V = ?
(2)r = 3,h = 10 V = ?
(3)V = 9.42,h = 3 S = ?
二 運用知識,解決實際問題
1.(投影出示例2:一堆小麥圖)師:有這樣一堆小麥,你知道它的體積是多少嗎? 怎么辦呢?
2.這些數(shù)據(jù)都是可以測量的。現(xiàn)在給你數(shù)據(jù):高為1.2米,底面直徑為4米
(1)麥堆的底面積:__________________
(2)麥堆的體積:____________________
3.知道了體積,這堆小麥大約有多少重能知道嗎?(每立方米小麥約735千克)(得 數(shù)保留整千克數(shù))
4.一個圓錐形沙堆,占地面積為3.14平方米,高1.5米。(1)沙堆的體積是多少平方 米?(2)如果每立方米沙約重1.6噸,這些沙子共重多少噸?(結(jié)果保留一位小數(shù))
5.用一根底面直徑2分米,高10分米的圓柱體木料,削成一個的圓錐,要削去多 少立方分米的木料?
(1)(出示圖)什么情況下削出的圓錐是的?為什么?
(2)削去的木料占原來木料的幾分之幾?
(3)如果這是一塊長4分米,寬2分米,高1分米的長方體木料,又在什么情況下削出 的'圓錐是的呢?
三 綜合練習
1.一個圓柱的底面積為81平方厘米,高12厘米,和它等體積等底的圓錐高為( )厘米;和它等體積等高的圓錐的底面積為( )厘米。
2.將一個體積為16立方分米的圓錐形容器盛滿水,倒入一個底面積為10平方分米的 圓柱體容器中,水面的高度是( )分米
3.一個圓柱和一個圓錐的體積相等,如果圓柱的高是圓錐的4/5,那么圓柱的底面積是 圓錐的幾分之幾?
圓錐的體積教案14
一、學習目標
。ㄒ唬⿲W習內(nèi)容
《義務教育教科書數(shù)學》(人教版)六年級下冊第33—34頁的例2和例3。例2是以探索圓錐的體積與和它等底等高的圓柱體積之間的關系為例,讓學生在探究過程中獲得數(shù)學活動經(jīng)驗。例3則是在例2的基礎上運用圓錐的體積公式解決實際問題,豐富解決問題的策略,感受數(shù)學與生活密不可分的聯(lián)系。
。ǘ┖诵哪芰
在探索圓錐的體積與和它等底等高的圓柱體積之間的關系的過程中,滲透轉(zhuǎn)化思想,發(fā)展推理能力。
。ㄈ⿲W習目標
1.借助已有的知識經(jīng)驗,通過觀察、猜測、實驗,探求出圓錐體積的計算公式,并能運用公式正確地解決簡單的實際問題。
2.在圓錐體積計算公式的推導過程中,進一步理解圓錐與圓柱的聯(lián)系,發(fā)展推理能力。
。ㄋ模⿲W習重點
圓錐體積公式的理解,并能運用公式求圓錐的體積。
。ㄎ澹⿲W習難點
圓錐體積公式的推導
。┡涮踪Y源
實施資源:《圓錐的體積》名師課件、若干同樣的圓柱形容器、若干與圓柱等底等高和不等底等高的圓錐形容器,沙子和水
二、教學設計
。ㄒ唬┱n前設計
1.復習任務
。1)我們學過哪些立體圖形?它們的體積計算公式分別是什么?請你整理出來。
。2)這些立體圖形的體積計算公式是怎么推導的?運用了什么方法?請整理出來。
設計意圖:通過復習物體的體積公式以及圓錐體積的推導,深化轉(zhuǎn)化思想在生活中的應用,也為圓錐體積的推導埋下伏筆。
(二)課堂設計
1.情境導入
。ǔ鍪旧扯眩
師:你們有辦法知道這個沙堆的體積嗎?
學生自由發(fā)言,提出各種辦法。
預設:把它放進圓柱形的容器里,測量出圓柱的底面積和高就可以知道等等
師:能不能像其它立體圖形一樣,探究出一個公式來求圓錐的體積呢?這節(jié)課我們來研究。板書課題
設計意圖:利用情境引入,激發(fā)學生求知的欲望,引出求圓錐體積公式的必要性。
2.問題探究
。1)觀察猜想
師:你們覺得,圓錐的體積和我們認識的哪種立體圖形的體積可能有關?為什么?
學生自由發(fā)言。
。▓A柱,圓柱的底面是圓,圓錐的底面也是圓……)
師:認真觀察,它們之間的體積會有什么關系?(出示圓柱、圓錐的教具)
學生猜想。
。2)操作驗證
師:圓錐的體積究竟和圓柱的體積有什么關系?請同學們親自驗證。
實驗用具:教師準備等底等高和不等底等高的各種圓柱、圓錐模具,一些水。
實驗要求:各組根據(jù)需要先上臺選用實驗用具,然后小組成員分工合作,做好實驗數(shù)據(jù)的收集和整理。
1號圓錐2號圓錐3號圓錐
次數(shù)
與圓柱是否等底等高
學生選過實驗用具后進行試驗,教師巡視,發(fā)現(xiàn)問題及時指導,收集有用信息。
。3)交流匯報
、賲R報實驗結(jié)果
各組匯報實驗結(jié)果。
、诜治鰯(shù)據(jù)
師:觀察全班實驗的數(shù)據(jù),你能發(fā)現(xiàn)什么?
(大部分實驗的結(jié)果是能裝下三個圓錐的水,也有兩次多或四次等)
師:什么情況下,圓柱剛好能裝下三個圓錐的水?
各組互相觀察各自的圓柱和圓錐,發(fā)現(xiàn)只有在等底等高的情況下,圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。
師:是不是所有符合等底等高條件的圓柱、圓錐,它們的體積之間都具有這種關系呢?
老師用標準教具裝沙土再演示一次,加以驗證。
、蹥w納小結(jié)
師:誰能來總結(jié)一下,通過實驗我們得到的結(jié)果是什么?
(4)公式推導
師:你能把上面的試驗結(jié)果用式子表示嗎?(學生嘗試)
老師結(jié)合學生的回答板書:
圓錐的體積公式及字母公式:
圓錐的體積=×圓柱的體積
。健恋酌娣e×高
S=sh
師:在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
進一步強調(diào)等底等高的圓錐和圓柱才存在這種關系。
設計意圖:通過觀察、猜測,讓學生感知圓錐的體積與圓柱體積之間存在著一定的關系,滲透轉(zhuǎn)化的思想。再通過對實驗數(shù)據(jù)的分析,進一步感知圓錐的體積是和它等底等高的圓柱的體積的三分之一,在這一過程中,發(fā)展學生的推理能力。
考查目標1、2
。5)實踐應用
師:還記得這堆沙子嗎?如果給你了它的高和底面的直徑,你能算出這堆沙的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?(得數(shù)保留兩位小數(shù)。)
師:要求沙堆的體積需要已知哪些條件?
(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
學生試做后交流匯報。
已知圓錐的底面直徑和高,可以直接利用公式
V=π()h來求圓錐的體積。
師:在計算過程中我們要注意什么?為什么?
注意要乘以,因為通過實驗,知道圓錐的體積等于與它等底等高的圓柱體積的。
3.鞏固練習
(1)填空。
①圓柱的`體積是12m,與它等底等高的圓錐的體積是()m。
②圓錐的體積是2.5m,與它等底等高的圓柱的體積是()m。
③圓錐的底面積是3.1m2,高是9m,體積是()m。
。2)判斷,并說明理由。
、賵A錐的體積等于圓柱體積的。()
、趫A錐的體積等于和它等底等高的圓柱體積的3倍。()
(3)課本第34頁的做一做。
、僖粋圓錐形的零件,底面積是19cm2,高是12cm,這個零件的體積是多少?
②一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高是5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))
4.課堂總結(jié)
師:這節(jié)課你收獲了什么?和大家分享一下吧!
圓柱的體積是與它等底等高圓錐體積的3倍;圓錐的體積是與它等底等高圓柱體積的三分之一;V圓錐=V圓柱=Sh。
。ㄈ┱n時作業(yè)
1.王師傅做一件冰雕作品,要將一塊棱長30厘米的正方體冰塊雕成一個最大的圓錐,雕成的圓錐體積是多少立方厘米?
答案:30÷2=15(厘米)
×3.14×152×30
。235.5×30
。7065(立方厘米)
答:雕成的圓錐的體積是7065立方厘米。
解析:這是一道考察學生空間思維能力的題,要在正方體里面雕一個最大的圓錐,必須滿足圓錐的底面直徑等于正方體的棱長,圓錐的高也要等于正方體的棱長,在實際中感受生活和數(shù)學的緊密聯(lián)系,同時為下面在長方體里放一個最大的圓錐做了鋪墊。考查目標1、2
2.看看我們的教室是什么體?(長方體)
要在我們的教室里放一個盡可能大的圓錐體,想一想,可以怎樣放?怎樣放體積最大?(測量教室長12m,寬6m,高4m.先計算,再比較怎樣放體積最大的圓錐體。)
解析:這是一道開放題,有一定的難度,在考察學生對圓錐體積理解的基礎上,又綜合了長方體的知識,對學生的空間想象能力要求比較高。
、僖蚤L寬所在的面為底面做最大的圓錐,此時圓錐的高為4m,底面圓的直徑為6m.
、谝詫捀咚诘拿鏋榈酌孀鲎畲蟮膱A錐,此時圓錐的高為12m,底面圓的直徑為4m.
③以長高所在的面為底面做最大的圓錐,此時圓錐的高為6m,底面圓的直徑為4m.
以上三種情況計算并加以比較,得出結(jié)論?疾槟繕1、2
圓錐的體積教案15
教學目標
1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。、
2、能力目標:培養(yǎng)學生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學生學習將新知識轉(zhuǎn)化為原有知識的學習方法、
教學重難點
教學重點:圓錐的體積計算。
教學難點:圓錐的體積計算公式的推導。
教學工具
ppt課件。
教學過程
一、導入新課
1、出示鉛錘
師:同學們,我們剛認識了圓錐,在學習“圓錐的認識”時認識了這個物體—鉛錘。鉛錘的外形是圓錐形的,這個鉛錘所占空間的大小叫做這個鉛錘的體積。
問:你們有沒有辦法來測量這個鉛錘的體積?
生:排水法
師:同學們回答很積極,想到了之前學過的排水法,那咱們對這個方法進行一下評價(學生想到了,并不是所有的圓錐都可以用排水法來測量體積。比如一些龐大的圓錐形物體)
2、PPT出示圓錐形麥堆和圓錐形的高大的建筑物
像這種比較大的圓錐形的物體就不適合用排水法測量體積,所以我們需要找到一個解決此類問題的普遍的'方法。
出示課題圓錐的體積
二、探究新知
1、回憶
師:我們學過那些形狀的物體的體積的計算方法
生:長方體正方體圓柱體(學生邊說,師邊PPT出示圖片)
師:我們在推導圓柱體體積的計算方法的時候是將圓柱體轉(zhuǎn)化長方體或者正方體,轉(zhuǎn)化前后體積不變,你覺得圓錐體和哪種形狀的物體有關系呢?
生:圓柱體
師:為什么?
生:圓錐體和圓柱體都有圓形的底面
2、猜測
師:既然大家都認為圓錐體和圓柱體由一定的關系,你能大膽猜測一下,圓錐體和圓柱體的體積之間有怎樣的關系么?
。▽W生猜測,找學生說說猜測的結(jié)果)
3、驗證
師:有了猜測我們就通過實驗來驗證咱們的猜測(利用學具進行驗證,一邊實驗,一邊填寫實驗記錄單)
(找學生讀一讀表格中需要填寫的內(nèi)容,并提問,比較圓柱和圓錐的時候,是比較的什么?為學生的實驗操作做一個引領。操作過程6—8分鐘)
4、實驗后討論,并分組匯報實驗結(jié)果
(在實驗中我設置了兩次不同的實驗,第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對比得出結(jié)論,并不是所有的圓柱和圓錐都符合3倍關系,是有前提條件的)
5、結(jié)論
通過操作發(fā)現(xiàn):圓錐的體積是同它等底等高的圓柱體積的1/3
板書:圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
三、運用知識
1、PPT出示填空和判斷
師:我們學會了求圓錐的體積的計算方法,現(xiàn)在我們利用所學知識來解決生活中的實際問題。
2、PPT出示例題3
(學生計算,計算過程中巡視學生解題情況,挑選兩種不同的解題方法展示)
四、拓展
PPT出示拓展題
五、總結(jié),談收獲
通過本節(jié)課的學習,你有哪些收獲?
【圓錐的體積教案】相關文章:
[經(jīng)典]圓錐的體積教案11-17
《圓錐的體積》教案08-12
圓錐的體積01-16
圓錐的體積教案15篇02-14
圓錐的體積教案(15篇)02-24
圓錐的體積說課稿07-02
《圓錐的體積》說課稿02-16
《圓錐的體積》教案精華(2篇)09-04
圓錐的體積教學反思10-19