- 相關(guān)推薦
一元一次不等式教案
作為一位優(yōu)秀的人民教師,總歸要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編收集整理的一元一次不等式教案,希望能夠幫助到大家。
一元一次不等式教案1
教學(xué)目標(biāo)
1、能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實(shí)際問題.
2、通過例題教學(xué),學(xué)生能夠?qū)W會(huì)從數(shù)學(xué)的角度認(rèn)識(shí)問題,理解問題,提出問題,?? 學(xué)會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型.
3、能夠認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí).
教學(xué)重點(diǎn)?? 能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,列出一元一次不等式(組)解決 實(shí)際問題
教學(xué)難點(diǎn)?? 審題,根據(jù)實(shí)際問題列出不等式.
例題?? 甲、乙兩商場(chǎng)以同樣的價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠:在甲商場(chǎng)累計(jì)購物超過100元后,超出100元的部分按90%收費(fèi);在乙商場(chǎng)累計(jì)購物超過50元后,超出50元的部分按95%收費(fèi)。顧客到哪家商場(chǎng)購物花費(fèi)少??
解:設(shè)累計(jì)購物x元,根據(jù)題意得
(1)當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣;
(2)當(dāng)50< x≤100時(shí),到乙商場(chǎng)購物花費(fèi)少;
。3)當(dāng)x > 100時(shí),到甲商場(chǎng)的花費(fèi)為100+0.9(x-100) , 到乙商場(chǎng)的花費(fèi)為50+0.95(x-50)則
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150
答:當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣;
當(dāng)50< x≤100時(shí),到乙商場(chǎng)購物花費(fèi)少;當(dāng)x>150時(shí),到甲商場(chǎng)購物花費(fèi)少;當(dāng)100 < x <150時(shí),到乙商場(chǎng)購物花費(fèi)少;當(dāng)x=150時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣。
變式練習(xí)? 學(xué)校為解決部分學(xué)生的午餐問題,聯(lián)系了兩家快餐公司,兩家公司的.報(bào)價(jià)、質(zhì)量和服務(wù)承諾都相同,且都表示對(duì)學(xué)生優(yōu)惠:甲公司表示每份按報(bào)價(jià)的90%收費(fèi),乙公司表示購買100份以上的部分按報(bào)價(jià)的80%收費(fèi)。問:選擇哪家公司較好?
解:設(shè)購買午餐x份,每份報(bào)價(jià)為“1”,根據(jù)題意得
0.9x > 100+0.8(x-100),解之得x >
0.9x < 100+0.8(x-100),解之得x <
0.9x = 100+0.8(x-100),解之得x =
答:當(dāng)x>時(shí),選乙公司較好;當(dāng)0 < x <時(shí),選甲公司較好;當(dāng)x=時(shí),兩公司實(shí)際收費(fèi)相同。
作業(yè)
1、某商店5月1號(hào)舉行促銷優(yōu)惠活動(dòng),當(dāng)天到該商店購買商品有兩種,一:用168元購買會(huì)員卡成為會(huì)員后,憑會(huì)員卡購買商店內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;二:若不購買會(huì)員卡,則購買商店內(nèi)任何商品,一律按商品價(jià)格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會(huì)員。請(qǐng)幫小敏算一算,采用哪種更合算?
2、某單位計(jì)劃10月份組織員工到杭州旅游,人數(shù)估計(jì)在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價(jià)格都是每人元。該單位聯(lián)系時(shí),甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊(duì)的旅游費(fèi)用,其余游客八折優(yōu)惠。問該單位怎樣選擇,可使其支付的旅游總費(fèi)用較少?
一元一次不等式教案2
(一)復(fù)習(xí)提問:
三角形的三邊關(guān)系?
(二)列一元一次不等式組
問題:現(xiàn)有兩根木條a和b,a長(zhǎng)10cm,b長(zhǎng)3cm.如果要再找一根木條c,用這三根木條釘成一個(gè)三角形木框,那么對(duì)木條c的長(zhǎng)度有什么要求?
注:這個(gè)問題是本節(jié)的引入問題,三角形木框的形狀不唯一確定,只要能成為三角形即可.
探究:用三根長(zhǎng)度分別為14cm,9cm,6cm的木條c1,c2,c3分別試試,其中哪根木條能與木條a和b一起釘成三角形木框?
可以發(fā)現(xiàn),當(dāng)木條a和b的長(zhǎng)度確定后,木條c太長(zhǎng)或太短,都不能與a和b一起釘成三角形.
由于“三角形中兩邊之和大于第三邊,兩邊之差小于第三邊”,設(shè)木條c長(zhǎng)xcm,則x必須同時(shí)滿足不等式x10+3①和x10-3②
注:木條c必須同時(shí)滿足兩個(gè)條件,即ca+b,ca-b.
類似于方程組,把這兩個(gè)不等式合起來,組成一個(gè)一元一次不等式組記作注:這里并未正式給一元一次不等式組下定義,只是說這兩個(gè)不等式合起來,組成一個(gè)一元一次不等式組.實(shí)際上,兩個(gè)或更多的一元一次不等式組合起來,都組成一個(gè)一元一次不等式組.
(三)一元一次不等式組的解集
類比方程組的解,怎樣確定不等式組中x的可取值的范圍呢?
不等式組中的各不等式解集的公共部分,就是不等式組中x可以取值的范圍.
注:這里還未正式出現(xiàn)不等式組的解集的概念,但已點(diǎn)出各不等式的解集的公共部分即不等式組中未知數(shù)的可取值范圍.
由不等式①解得x13.
由不等式②解得x7.
從圖9.3—2容易看出,x可以取值的范圍為713.
注:利用數(shù)軸可以直觀形象地認(rèn)識(shí)公共部分.這個(gè)公共部分是兩端有界的開區(qū)間.
這就是說,當(dāng)木條c比7cm長(zhǎng)并且比13cm短時(shí),它能與木條a和b一起釘成三角形木框.
一般地,幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式組的`解集.解不等式組就是求它的解集.
注:這里正式給出不等式組的解集以及解不等式組的定義13.注:利用數(shù)軸可以直觀形象地認(rèn)識(shí)公共部分.這個(gè)公共部分是兩端有界的開區(qū)間.這就是說,當(dāng)木條c比7cm長(zhǎng)并且比13cm短時(shí),它能與木條a和b一起釘成三角形木框.一般地,幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.注:這里正式給出不等式組的解集以及解不等式組的定義。
一元一次不等式教案3
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
本書首先結(jié)合實(shí)例引入一元一次不等式組的解集的概念,然后通過三個(gè)例題說明利用數(shù)軸解一元一次不等式組的方法,最后對(duì)一元一次不等式組的解法步驟進(jìn)行了總結(jié).
二、重點(diǎn)、難點(diǎn)分析
本節(jié)教學(xué)的重點(diǎn)是掌握一元一次不等式組的解法步驟并準(zhǔn)確地求出解集.難點(diǎn)是正確應(yīng)用不等式的基本性質(zhì)對(duì)不等式進(jìn)行變形、求不等式組中各個(gè)不等式解集的公共部分.不等式在中學(xué)代數(shù)中是研究問題的重要工具,例如求函數(shù)的定義域、值域、研究函數(shù)的單調(diào)性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識(shí).不等式也是進(jìn)一步學(xué)習(xí)其他數(shù)學(xué)內(nèi)容的基礎(chǔ).學(xué)習(xí)和掌握不等式的求解和不等式的證明方法,對(duì)培養(yǎng)學(xué)生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因?yàn),解各類不等式的問題都可以歸結(jié)為解一些由簡(jiǎn)單不等式所組成的不等式組.
1、在構(gòu)成不等式組的幾個(gè)不等式中
①這幾個(gè)一元一次不等式必須含有同一個(gè)未知數(shù);
、谶@里的“幾個(gè)”并未確定不等式的個(gè)數(shù),只要不是一個(gè),兩個(gè),三個(gè),四個(gè)……都行.
2、當(dāng)幾個(gè)不等式的解集沒有公共部分時(shí),我們就說這個(gè)不等式組無解.
3、由兩個(gè)一元一次不等式組成的不等式的解集,共歸結(jié)為下面四種基本情況:
【注意】①其中第(4)個(gè)不等式組,實(shí)質(zhì)上是矛盾不等式組,任何數(shù)都不能使兩個(gè)不等式同時(shí)成立。所以說這個(gè)不等式組無解或說其解集為空集。②從上面列出的表中,我們可以概括出來不等式組公共解的一規(guī)律:同大取大,同小取小,一大一小中間找。
三、教法建議
1.解本節(jié)的.引例及例1、例2、例3時(shí),注意把解不等式組的思路講清楚,即先分別解每一個(gè)不等式,求出解集,再求這些解集的公共部分.求公共部分的過程一定要結(jié)合數(shù)軸來講。
2.這節(jié)課的講解自始至終要突出解不等式組的基本思想以及解一元一次不等式組的步驟這兩個(gè)重點(diǎn).準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點(diǎn)表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。
3.求公共解集是這節(jié)課的新授內(nèi)容,教師要充分利用數(shù)軸表示不等式解集具有形象、直觀、易于說明問題這些優(yōu)點(diǎn).解集的公共部分教師可用彩筆在數(shù)軸的相應(yīng)部分描畫出來,使學(xué)生感到醒目,便于理解記憶。
4.每組不等式不要超過三個(gè),關(guān)鍵是使學(xué)生理解和掌握解不等式組的基本思想和兩個(gè)步驟,不宜做過于難、過于多、重復(fù)的機(jī)械計(jì)算。
一元一次不等式教案4
復(fù)習(xí)鞏固解下列不等式:
、5x+54<x-1②2(1一3x)3x+20
、2(一3+x)<3(x+2)
、(x+5)3(x-5)-6
先讓學(xué)生板演、練習(xí),然后師生共同點(diǎn)評(píng)、訂正,指出解題中應(yīng)注意的地方,復(fù)習(xí)一元一次不等式的解法.讓學(xué)生在解題過程中有目的地思考,既可鞏固已學(xué)內(nèi)容,又為下面的新課做好鋪墊。
提出問題20xx年北京空氣質(zhì)量良好(二級(jí)以上)的天數(shù)與全年天數(shù)之比達(dá)到55%.若到20xx年這樣的比值要超過70%,那么,20xx年北京空氣質(zhì)量良好(二級(jí)以上)的天數(shù)至少要增加多少天?選擇學(xué)生感興趣的問題,可以激發(fā)學(xué)習(xí)熱情,此題既承上啟下,又能增強(qiáng)學(xué)生的應(yīng)用意識(shí)。
解決問題1、20xx年北京空氣質(zhì)量良好的天數(shù)是多少?
2、用x表示20xx年增加的`空氣質(zhì)量良好的天數(shù),則20xx年北京空氣質(zhì)量良好的天數(shù)是多少?
3、20xx年共有多少天?與x有關(guān)的哪個(gè)式子的值應(yīng)超過70%?這個(gè)式子表示什么?
4、怎樣解不等式在學(xué)生討論后,教師做解題過程示范.
5、比較解這個(gè)不等式與解方程的步驟,兩者有什么不同嗎?
在學(xué)生充分討論的基礎(chǔ)上,師生共同歸納得出:
解一元一次不等式與解一元一次方程類似,只是不等式兩邊同乘以(或除以)一個(gè)數(shù)時(shí),要注意不等號(hào)的方向.解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x-a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa或xa)的形式.一連串的問題引發(fā)學(xué)生陣陣思考。
展示整個(gè)解題過程,有利于學(xué)生發(fā)現(xiàn)解一元一次不等式與
解一元一次方程的關(guān)系,初步感知實(shí)際問題對(duì)不等式解集的影響.
讓學(xué)生自己討論總結(jié),即可滲透類比思想,又能掌握注意點(diǎn).
鞏固新知1、解下列不等式,并在數(shù)軸上表示解集:
。1)(2)2、.當(dāng)x或y滿足什么條件時(shí),下列關(guān)系成立?
。1)2(x+1)大于或等于1;
。2)4x與7的和不小于6;
(3)y與1的差不大于2y與3的差;
。4)3y與7的和的小于-2.學(xué)會(huì)舉一反三,鞏固已學(xué)知識(shí)。a)的形式.一連串的問題引發(fā)學(xué)生陣陣思考。展示整個(gè)解題過程,有利于學(xué)生發(fā)現(xiàn)解一元一次不等式與解一元一次方程的關(guān)系,初步感知實(shí)際問題對(duì)不等式解集的影響.讓學(xué)生自己討論總結(jié),即可滲透類比思想,又能掌握注意點(diǎn).鞏固新知1、解下列不等式,并在數(shù)軸上表示解集:(1)(2)2、.當(dāng)x或y滿足什么條件時(shí),下列關(guān)系成立?(1)2(x+1)大于或等于1;(2)4x與7的和不小于6;(3)y與1的差不大于2y與3的差;(4)3y與7的和的小于-2.學(xué)會(huì)舉一反三,鞏固已學(xué)知識(shí)
一元一次不等式教案5
實(shí)際問題與一元一次不等式教案
教學(xué)目標(biāo)
1、會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決實(shí)際問題;
2、通過觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷從實(shí)際中抽象出數(shù)學(xué)模型的過程,積累利用一元一次不等式解決實(shí)際問題的經(jīng)驗(yàn),滲透分類討論思想,感知方程與不等式的內(nèi)在聯(lián)系;
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣。
教學(xué)難點(diǎn)弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式。
知識(shí)重點(diǎn)尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型。
教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念
提出問題某學(xué)校計(jì)劃購實(shí)若干臺(tái)電腦,現(xiàn)從兩家商店了解到同一型號(hào)的電腦每臺(tái)報(bào)價(jià)均為6000元,并且多買都有一定的優(yōu)惠.甲商場(chǎng)的優(yōu)惠條件是:第一臺(tái)按原報(bào)價(jià)收款,其余每臺(tái)優(yōu)惠25%;乙商場(chǎng)的優(yōu)惠條件是:每臺(tái)優(yōu)惠20%.如果你是校長(zhǎng),你該怎么考慮,如何選擇?
(多媒體展示商場(chǎng)購物情景)通過買電腦這個(gè)學(xué)生非常熟悉的生活實(shí)例,引起學(xué)生濃厚的學(xué)習(xí)興趣,感受到數(shù)學(xué)來源于生活,生活中更需要數(shù)學(xué)。
探究新知
1、分組活動(dòng).先獨(dú)立思考,理解題意.再組內(nèi)交流,發(fā)表自己的觀點(diǎn).最后小組匯報(bào),派代表論述理由.
2、在學(xué)生充分發(fā)表意見的基礎(chǔ)上,師生共同歸納出以下三種采購方案:
(1)什么情況下,到甲商場(chǎng)購買更優(yōu)惠?
(2)什么情況下,到乙商場(chǎng)購買更優(yōu)惠?
(3)什么情況下,兩個(gè)商場(chǎng)收費(fèi)相同?
3、我們先來考慮方案:
設(shè)購買x臺(tái)電腦,如果到甲商場(chǎng)購買更優(yōu)惠.
問題1:如何列不等式?
問題2:如何解這個(gè)不等式?
在學(xué)生充分討論的基礎(chǔ)上,教師歸納并板書如下:解:設(shè)購買x臺(tái)電腦,如果到甲商場(chǎng)購買更優(yōu)惠,則6000+6000(1-25%)(x-1)<6000(1-20%)x
去括號(hào),得
去括號(hào),得:6000+4500x-45004<4800x
移項(xiàng)且合并,得:-300x<1500
不等式兩邊同除以-300,得:x<5
答:購買5臺(tái)以上電腦時(shí),甲商場(chǎng)更優(yōu)惠.
4、讓學(xué)生自己完成方案(2)與方案(3),并匯報(bào)完成情況.
教師最后作適當(dāng)點(diǎn)評(píng).鼓勵(lì)學(xué)生大膽猜想,對(duì)研究的問題發(fā)表見解,進(jìn)行探索、合
作與交流,涌現(xiàn)出多樣化的解題思路.教師及時(shí)予以引導(dǎo)、歸納和總結(jié),讓學(xué)生感知不等式的建模。
完整的解題過程的展現(xiàn),有利于培養(yǎng)學(xué)生有條理地思考和表達(dá)的習(xí)慣。
解決問題甲、乙兩個(gè)商場(chǎng)以同樣的價(jià)格出售同樣的商品,同時(shí)又各自推出不同的優(yōu)惠措施.甲商場(chǎng)的優(yōu)惠措施是:累計(jì)購買100元商品后,再買的商品按原價(jià)的90%收費(fèi);乙商場(chǎng)則是:累計(jì)購買50元商品后,再買的商品按原價(jià)的95%收費(fèi).顧客選擇哪個(gè)商店購物能獲得更多的優(yōu)惠?
問題1:這個(gè)問題比較復(fù)雜.你該從何入手考慮它呢?
問題2:由于甲商場(chǎng)優(yōu)惠措施的起點(diǎn)為購物100元,乙商場(chǎng)優(yōu)惠措施的起點(diǎn)為購物50元,起點(diǎn)數(shù)額不同,因此必須分別考慮.你認(rèn)為應(yīng)分哪幾種情況考慮?
分組活動(dòng).先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果.
最后教師總結(jié)分析:
1、如果累計(jì)購物不超過50元,則在兩家商場(chǎng)購物花費(fèi)是一樣的;
2、如果累計(jì)購物超過50元但不超過100元,則在乙商場(chǎng)購物花費(fèi)小。
3、如果累計(jì)購物超過100元,又有三種情況:
(1)什么情況下,在甲商場(chǎng)購物花費(fèi)小?
(2)什么情況下,在乙商場(chǎng)購物花費(fèi)小?
(3)什么情況下,在兩家商場(chǎng)購物花費(fèi)相同?
上述問題,在討論、交流的基礎(chǔ)上,由學(xué)生自己解決,教師可適當(dāng)點(diǎn)評(píng)。設(shè)置開放性問題,為學(xué)生開放性思維提供時(shí)間和空間,可極大調(diào)動(dòng)學(xué)生的創(chuàng)造積極性.應(yīng)把
握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。
這些問題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì).
引導(dǎo)學(xué)生用數(shù)學(xué)眼光去觀察周圍的生活現(xiàn)象,思考能否用數(shù)學(xué)知識(shí)、方法、觀點(diǎn)和思想去
解決所遇到的'問題.
總結(jié)歸納通過體驗(yàn)買電腦、選商場(chǎng)購物,感受實(shí)際生活中存在的不等關(guān)系,用不等式來表示這樣的關(guān)系可為解決問題帶來方便.由實(shí)際問題中的不等關(guān)系列出不等式,就把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,再通過解不等式可得到實(shí)際問題的答案.讓學(xué)生在積極愉快的氣氛中溫習(xí)本節(jié)課學(xué)到的知識(shí)和技能,體會(huì)收獲的喜悅。
小結(jié)與作業(yè)
布置作業(yè)1、必做題:教科書第140頁習(xí)題9.2第1題(1)(2)第3題1、2。
2、選做題:教科書第141頁習(xí)題9.2第5、6題
3、備選題.
(1)某校兩名教師擬帶若干名學(xué)生去旅游,聯(lián)系了兩家標(biāo)價(jià)相同的旅游公司.經(jīng)洽談,甲公司的優(yōu)惠條件是一名教師全額收費(fèi),其余師生按7.5折收費(fèi);乙公司的優(yōu)惠條件則是全體師生都按8折收費(fèi).
、佼(dāng)學(xué)生人數(shù)超過多少時(shí),甲公司的價(jià)格比乙公司優(yōu)惠?
、诮(jīng)核算,甲公司的優(yōu)惠價(jià)比乙公司要便宜金,問參加旅游的學(xué)生有多少人?
(2)某單位要制作一批宣傳資料.甲公司提出:每份材料收費(fèi)20元,另收設(shè)計(jì)費(fèi)3000元;乙公司提出:每份材料收費(fèi)30元,不收設(shè)計(jì)費(fèi).
、偈裁辞闆r下,選擇甲公司比較合算?
、谑裁辞闆r下,選擇乙公司比較合算?
、凼裁辞闆r下,兩公司收費(fèi)相同?
(3)某移動(dòng)通訊公司開設(shè)兩種業(yè)務(wù):“全球通”月租費(fèi)30元,每分鐘通話費(fèi)o.2元;“神州行”沒有月租費(fèi),每分鐘通話費(fèi)0.4元(兩種通話均指市內(nèi)通話).如果一個(gè)月內(nèi)通話x分鐘,選擇哪種通訊業(yè)務(wù)比較合算?
(4)某商場(chǎng)畫夾每個(gè)定價(jià)20元,水彩每盒定價(jià)5元.為了促銷,商場(chǎng)制定了兩種優(yōu)惠辦法:一是買一個(gè)畫夾送一盒水彩;一是畫夾和水彩均按九折付款.章老師要買畫夾4個(gè),水彩若干盒(不少于4盒).問:哪種方法更優(yōu)惠?
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
本課設(shè)置了豐富的實(shí)際情境,比如蹺蹺板游戲、爆破問題等,研究這些問題,可以使學(xué)生體會(huì)到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系,不等式是現(xiàn)實(shí)世界中不等關(guān)系的一種數(shù)學(xué)表示形式,它也是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效模型.
教學(xué)中要突出知識(shí)之間的內(nèi)在聯(lián)系.不等式與方程一樣,都是反映客觀事物變化規(guī)律及其關(guān)系的模型.在教學(xué)中,類比已經(jīng)學(xué)過的方程知識(shí),引導(dǎo)學(xué)生自己去探索、發(fā)現(xiàn)、甄別,從而得出一元一次不等式、不等式的解與解集的意義.
教學(xué)過程也是學(xué)生的認(rèn)知過程,只有學(xué)生積極地參與教學(xué)活動(dòng)才能收到良好的效果.因此,本課采用啟發(fā)誘導(dǎo)、實(shí)例探究、講練結(jié)合的教學(xué)方法,揭示知識(shí)的發(fā)生和形成過程.這種教學(xué)方法以“生動(dòng)探索”為基礎(chǔ),先“引導(dǎo)發(fā)現(xiàn)”,后“講評(píng)點(diǎn)撥”,讓學(xué)生在克服困難與障礙的過程中充分發(fā)揮自己的觀察力、想像力和思維力,再加上多媒體的運(yùn)用,使學(xué)生真正成為學(xué)習(xí)的主體.
一元一次不等式教案6
[學(xué)習(xí)目標(biāo)]
1.進(jìn)一步鞏固一元一次不等式組的解法
2.會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問題
3.理解一元一次不等式組應(yīng)用題的一般解題步驟
[學(xué)習(xí)重點(diǎn)]一元一次不等式組的應(yīng)用
[學(xué)習(xí)難點(diǎn)]在實(shí)際問題中尋找不等關(guān)系,列出不等式組
[學(xué)習(xí)過程]
一、春耕(創(chuàng)設(shè)情境,導(dǎo)入新課)
在上課之前,老師請(qǐng)大家來幫一個(gè)忙,幫老師來解決一道難題:老師有一個(gè)熟人姓王,他有一個(gè)哥哥和一個(gè)弟弟,哥哥的年齡是20歲,小王的年齡的2倍加上他弟弟年齡的5倍等于97.現(xiàn)在小王要老師猜猜他和他弟弟的`年齡各是多少?俗話說三個(gè)臭皮匠,可抵一個(gè)諸葛亮,現(xiàn)在我們?nèi)嗤瑢W(xué)可抵得上很多諸葛亮,所以老師相信大家一定有辦法的.
二、夏耘(師生互動(dòng),課堂探究)
(一)提出問題,引發(fā)討論
當(dāng)一個(gè)未知數(shù)同時(shí)滿足幾個(gè)不等關(guān)系時(shí),我們就按這些關(guān)系分別列幾個(gè)不等式,這樣就得到不等式組,用不等式組解決實(shí)際問題時(shí),其公共解是否一定為實(shí)際問題的解呢?請(qǐng)舉例說明.
例:甲以5km/時(shí)的速度進(jìn)行跑步鍛煉,2小時(shí)后,乙騎自行車從同地出發(fā)沿同一條路追趕甲.但他們兩人約定,乙最快不早于1小時(shí)追上甲,最慢不晚于1小時(shí)15分追上甲.你能確定乙騎車的速度應(yīng)當(dāng)控制在什么范圍嗎?
(二)導(dǎo)入知識(shí),解釋疑難
1.教材內(nèi)容講解
如課本例2(P145)(請(qǐng)同學(xué)自己閱讀,動(dòng)手列不等式組進(jìn)行求解,再將自己答案與課本答案進(jìn)行比較)不等式組的解集為15
又如:將若干只雞放入若干個(gè)籠,若每個(gè)籠里放4只,則有1只雞無籠可放;若每個(gè)籠里放5只,則有1籠無雞可放,那么至少有多少只雞,多少個(gè)籠?
2.探究活動(dòng)
把16根火柴首尾相接,圍成一個(gè)長(zhǎng)方形(不包括正方形),怎樣找到圍出不同形狀的長(zhǎng)方形個(gè)數(shù)最多的辦法呢?最多個(gè)數(shù)又是多少呢?
三.秋收(歸納總結(jié),知識(shí)回顧)
1. 應(yīng)用不等式組解決實(shí)際問題的步驟:1.審清題意;2.設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組;3.解不等式組;4.由不等式組的解確立實(shí)際問題的解;5.作答.(與列方程組解應(yīng)用題進(jìn)行比較)
2.雙基練習(xí)
1.已知方程組 有正整數(shù)解,則k的取值范圍是_________.
2.若不等式組 無解,求a的取值范圍.
3.當(dāng)2(m-3)< 時(shí),求關(guān)于x的不等式 >x-m的解集.
4.某學(xué)校為學(xué)生安排宿舍,現(xiàn)有住房若干間,若每間5人還有14人安排不下,若每間7人,則有一間還余一些床位,問學(xué)校有幾間房可以安排學(xué)生住宿?可以安排住宿的學(xué)生多少人?
四.冬藏(創(chuàng)新提升)
某商場(chǎng)為了促銷,開展對(duì)顧客贈(zèng)送禮品活動(dòng),準(zhǔn)備了若干件禮品送給顧客,在一次活動(dòng)中,如果每人送5件,則還余8件,如果每人送7件,則最后一人還不足3件.設(shè)該商場(chǎng)準(zhǔn)備了m件禮品,有x名顧客獲贈(zèng),請(qǐng)回答下列問題:
(1)用含x的代數(shù)式表示m.
(2)求出該次活動(dòng)中獲贈(zèng)顧客人數(shù)及所準(zhǔn)備的禮品數(shù)
一元一次不等式教案7
一、教學(xué)目標(biāo):
(一)知識(shí)與能力目標(biāo):(課件第2張)
1.體會(huì)解不等式的步驟,體會(huì)比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對(duì)數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實(shí)際問題中能夠體會(huì)將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會(huì)用數(shù)學(xué)語言表示實(shí)際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對(duì)一元一次方程的解法的復(fù)習(xí)和對(duì)不等式性質(zhì)的利用,導(dǎo)入對(duì)解不等式的討論。
3.學(xué)生體會(huì)通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實(shí)際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價(jià)值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會(huì)數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會(huì)集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會(huì)不等式解集的'奇異的數(shù)學(xué)美。
二、教學(xué)重、難點(diǎn):
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對(duì)應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡(jiǎn)單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識(shí)的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會(huì)用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵(lì)學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計(jì)算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動(dòng)
學(xué) 生 活 動(dòng)
設(shè) 計(jì) 意 圖
一元一次不等式教案8
教學(xué)目標(biāo)
1.知識(shí)與技能
理解一次函數(shù)與一元一次不等式的關(guān)系,發(fā)展學(xué)生的認(rèn)知體系.
2.過程與方法
經(jīng)歷探索一次函數(shù)與一元一次不等式的關(guān)系的過程,掌握其應(yīng)用方法.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的數(shù)學(xué)抽象思維,體會(huì)本節(jié)課知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系.
2.難點(diǎn):如何應(yīng)用一次函數(shù)性質(zhì)解決一元一次不等式的解集問題.
3.關(guān)鍵:從一次函數(shù)的圖象出發(fā),直觀地呈現(xiàn)出一元一次不等式的解的范圍.
教具準(zhǔn)備
采用“問題解決”的教學(xué)方法.
教學(xué)過程
一、回顧交流,知識(shí)遷移
問題提出:請(qǐng)思考下面兩個(gè)問題:
。1)解不等式5x+6>3x+10;
(2)當(dāng)自變量x為何值時(shí),函數(shù)y=2x-4的值大于0?
學(xué)生活動(dòng)觀察屏幕,通過思考,得到(1)、(2)的答案,回答問題.
教師活動(dòng)在學(xué)生充分探討的基礎(chǔ)上,引導(dǎo)學(xué)生思考:“一元一次不等式與一次函數(shù)之間有何內(nèi)在聯(lián)系?”
思路點(diǎn)撥在問題(1)中,不等式5x+6>3x+10可以轉(zhuǎn)化為2x-4>0,解這個(gè)不等式得x>2;問題(2)就是解不等式2x-4>0,得出x>2時(shí)函數(shù)y=2x-4的值大于0,因此這兩個(gè)問題實(shí)際上是同一個(gè)問題,從直線y=2x-4(如圖)可以看出.當(dāng)x>2時(shí),這條直線上的點(diǎn)在x軸的上方,即這時(shí)y=2x-4>0.
問題探索
教師敘述:由上面兩個(gè)問題的關(guān)系,能進(jìn)一步得到“解不等式ax+b>0”與“求自變量x在什么范圍內(nèi),一次函數(shù)y=ax+b的.值大于0”有什么關(guān)系?
學(xué)生活動(dòng)小組討論,觀察上述問題的圖象,聯(lián)系不等式、函數(shù)知識(shí),解決問題.
師生共識(shí)由于任何一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看出:當(dāng)一次函數(shù)值大(。┯0時(shí),求自變量相應(yīng)的取值范圍.
教學(xué)形式師生互動(dòng)交流,生生互動(dòng).
二、范例點(diǎn)擊,領(lǐng)悟新知
例2用畫函數(shù)圖象的方法解不等式5x+4<2x+10.
教師活動(dòng)激發(fā)思考.
學(xué)生活動(dòng)小組合作討論,運(yùn)用兩種思維方法解決例2問題.
解法1:原不等式化為3x-6<0,畫出直線y=3x-6(左圖),可以看出,當(dāng)x<2時(shí),這條直線上的點(diǎn)在x軸的下方,即這時(shí)y=3x-6<0,所以不等式的解集為x<2.
解法2:將原不等式的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4與直線y=2x+10(右圖),可以看出,它們交點(diǎn)的橫坐標(biāo)為2,當(dāng)x<2時(shí),對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)5x+4<2x+10,所以不等式的解集為x<2.
評(píng)析兩種解法都把解不等式轉(zhuǎn)化為比較直線上點(diǎn)的位置的高低.
三、隨堂練習(xí),鞏固深化
課本P216練習(xí).
四、課堂,發(fā)展?jié)撃?/p>
用一次函數(shù)圖象來解一元一次方程或一元一次不等式未必簡(jiǎn)單,但是從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù)、一元一次方程與一元一次不等式之間的關(guān)系,能直觀地看到怎樣用圖形來表示方程的解與不等式的解,這種用函數(shù)觀點(diǎn)認(rèn)識(shí)問題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)是重要的.
五、布置作業(yè),專題突破
課本P129習(xí)題14.3第3,4,7,8,10題.
一元一次不等式教案9
教學(xué)目標(biāo)
1、會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決實(shí)際問題;
2、通過觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷從實(shí)際中抽象出數(shù)學(xué)模型的過程,積累利用一元一次不等式解決實(shí)際問題的經(jīng)驗(yàn),滲透分類討論思想,感知方程與不等式的內(nèi)在聯(lián)系;
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣。
教學(xué)重點(diǎn):
尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型。
教學(xué)難點(diǎn):
弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式。
教學(xué)過程(師生活動(dòng))
提出問題某學(xué)校計(jì)劃購實(shí)若干臺(tái)電腦,現(xiàn)從兩家商店了解到同一型號(hào)的電腦每臺(tái)報(bào)價(jià)均為6000元,并且多買都有一定的優(yōu)惠。甲商場(chǎng)的優(yōu)惠條件是:第一臺(tái)按原報(bào)價(jià)收款,其余每臺(tái)優(yōu)惠25%;乙商場(chǎng)的優(yōu)惠條件是:每臺(tái)優(yōu)惠20%。如果你是校長(zhǎng),你該怎么考慮,如何選擇?
探究新知1、分組活動(dòng)。先獨(dú)立思考,理解題意。再組內(nèi)交流,發(fā)表自己的觀點(diǎn)。最后小組匯報(bào),派代表論述理由。
2、在學(xué)生充分發(fā)表意見的基礎(chǔ)上,師生共同歸納出以下三種采購方案:
(1)什么情況下,到甲商場(chǎng)購買更優(yōu)惠?
(2)什么情況下,到乙商場(chǎng)購買更優(yōu)惠?
(3)什么情況下,兩個(gè)商場(chǎng)收費(fèi)相同?
3、我們先來考慮方案:
設(shè)購買x臺(tái)電腦,如果到甲商場(chǎng)購買更優(yōu)惠。
問題1:如何列不等式?
問題2:如何解這個(gè)不等式?
在學(xué)生充分討論的基礎(chǔ)上,教師歸納并板書如下:解:設(shè)購買x臺(tái)電腦,如果到甲商場(chǎng)購買更優(yōu)惠,則6000+6000(1-25%)(x-1)<6000(1-20%)x
去括號(hào),得
去括號(hào),得:6000+4500x-45004<4800x
移項(xiàng)且合并,得:-300x<1500
不等式兩邊同除以-300,得<5
答:購買5臺(tái)以上電腦時(shí),甲商場(chǎng)更優(yōu)惠。
4、讓學(xué)生自己完成方案(2)與方案(3),并匯報(bào)完成情況。
教師最后作適當(dāng)點(diǎn)評(píng)。
解決問題甲、乙兩個(gè)商場(chǎng)以同樣的價(jià)格出售同樣的商品,同時(shí)又各自推出不同的優(yōu)惠措施。甲商場(chǎng)的優(yōu)惠措施是:累計(jì)購買100元商品后,再買的商品按原價(jià)的90%收費(fèi);乙商場(chǎng)則是:累計(jì)購買50元商品后,再買的商品按原價(jià)的`95%收費(fèi)。顧客選擇哪個(gè)商店購物能獲得更多的優(yōu)惠?
問題1:這個(gè)問題比較復(fù)雜。你該從何入手考慮它呢?
問題2:由于甲商場(chǎng)優(yōu)惠措施的起點(diǎn)為購物100元,乙商場(chǎng)優(yōu)惠措施的起點(diǎn)為購物50元,起點(diǎn)數(shù)額不同,因此必須分別考慮。你認(rèn)為應(yīng)分哪幾種情況考慮?
分組活動(dòng)。先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果。
最后教師總結(jié)分析:
1、如果累計(jì)購物不超過50元,則在兩家商場(chǎng)購物花費(fèi)是一樣的;
2、如果累計(jì)購物超過50元但不超過100元,則在乙商場(chǎng)購物花費(fèi)小。
3、如果累計(jì)購物超過100元,又有三種情況:
(1)什么情況下,在甲商場(chǎng)購物花費(fèi)。
(2)什么情況下,在乙商場(chǎng)購物花費(fèi)。
(3)什么情況下,在兩家商場(chǎng)購物花費(fèi)相同?
上述問題,在討論、交流的基礎(chǔ)上,由學(xué)生自己解決,教師可適當(dāng)點(diǎn)評(píng)。
總結(jié)歸納:
通過體驗(yàn)買電腦、選商場(chǎng)購物,感受實(shí)際生活中存在的不等關(guān)系,用不等式來表示這樣的關(guān)系可為解決問題帶來方便。由實(shí)際問題中的不等關(guān)系列出不等式,就把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,再通過解不等式可得到實(shí)際問題的答案。
布置作業(yè):
教科書第126頁習(xí)題9.2第1題(1)(2)第3題1、2。
一元一次不等式教案10
教學(xué)目標(biāo)
1、能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實(shí)際問題.
2、通過例題教學(xué),學(xué)生能夠?qū)W會(huì)從數(shù)學(xué)的角度認(rèn)識(shí)問題,理解問題,提出問題, 學(xué)會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型.
3、能夠認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí).
教學(xué)重點(diǎn): 能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,列出一元一次不等式(組)解決 實(shí)際問題
教學(xué)難點(diǎn): 審題,根據(jù)實(shí)際問題列出不等式.
例題: 甲、乙兩商場(chǎng)以同樣的價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲商場(chǎng)累計(jì)購物超過100元后,超出100元的部分按90%收費(fèi);在乙商場(chǎng)累計(jì)購物超過50元后,超出50元的部分按95%收費(fèi)。顧客到哪家商場(chǎng)購物花費(fèi)少
解:設(shè)累計(jì)購物x元,根據(jù)題意得
。1)當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣;
。2)當(dāng)50< x≤100時(shí),到乙商場(chǎng)購物花費(fèi)少;
。3)當(dāng)x > 100時(shí),到甲商場(chǎng)的花費(fèi)為100+0.9(x-100) , 到乙商場(chǎng)的花費(fèi)為50+0.95(x-50)則
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100), 解之得x = 150
答:當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣;
當(dāng)50< x≤100時(shí),到乙商場(chǎng)購物花費(fèi)少;當(dāng)x>150時(shí),到甲商場(chǎng)購物花費(fèi)少;當(dāng)100 < x <150時(shí),到乙商場(chǎng)購物花費(fèi)少;當(dāng)x=150時(shí),到甲、乙兩商場(chǎng)購物花費(fèi)一樣。
變式練習(xí),學(xué)校為解決部分學(xué)生的午餐問題,聯(lián)系了兩家快餐公司,兩家公司的'報(bào)價(jià)、質(zhì)量和服務(wù)承諾都相同,且都表示對(duì)學(xué)生優(yōu)惠:甲公司表示每份按報(bào)價(jià)的90%收費(fèi),乙公司表示購買100份以上的部分按報(bào)價(jià)的80%收費(fèi)。問:選擇哪家公司較好?
解:設(shè)購買午餐x份,每份報(bào)價(jià)為“1”,根據(jù)題意得
0.9x > 100+0.8(x-100),解之得x >200
0.9x < 100+0.8(x-100),解之得x < 200
0.9x = 100+0.8(x-100),解之得x = 200
答:當(dāng)x>200時(shí),選乙公司較好;當(dāng)0 < x <200時(shí),選甲公司較好;當(dāng)x=200時(shí),兩公司實(shí)際收費(fèi)相同。
作業(yè)
1、某商店5月1號(hào)舉行促銷優(yōu)惠活動(dòng),當(dāng)天到該商店購買商品有兩種方案,方案一:用168元購買會(huì)員卡成為會(huì)員后,憑會(huì)員卡購買商店內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;方案二:若不購買會(huì)員卡,則購買商店內(nèi)任何商品,一律按商品價(jià)格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會(huì)員。請(qǐng)幫小敏算一算,采用哪種方案更合算?
2、某單位計(jì)劃10月份組織員工到杭州旅游,人數(shù)估計(jì)在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價(jià)格都是每人200元。該單位聯(lián)系時(shí),甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊(duì)領(lǐng)導(dǎo)的旅游費(fèi)用,其余游客八折優(yōu)惠。問該單位怎樣選擇,可使其支付的旅游總費(fèi)用較少?
一元一次不等式教案11
(一)教材分析
本節(jié)課的內(nèi)容,是人教版七年級(jí)下冊(cè)第九章第二節(jié)“實(shí)際問題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運(yùn)用一元一次方程(或方程組)解決實(shí)際問題等知識(shí)的基礎(chǔ)上,利用不等式解決實(shí)際問題。這既是對(duì)已學(xué)知識(shí)的運(yùn)用和深化,又為今后在解決實(shí)際問題中提供另一種有效的解決途徑。通過實(shí)際問題的探究,讓學(xué)生學(xué)會(huì)列一元一次不等式,解決具有不等關(guān)系的實(shí)際問題。經(jīng)歷由實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,掌握利用一元一次不等式解決問題的基本過程。促進(jìn)學(xué)生的數(shù)學(xué)思維意識(shí),從而使學(xué)生樂于接觸社會(huì)環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承⿺?shù)學(xué)話題,能夠在數(shù)學(xué)活動(dòng)中發(fā)揮積極作用。同時(shí)向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問題的思想方法。不等式與現(xiàn)實(shí)生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識(shí)解決實(shí)際問題。
(二)學(xué)情分析
七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個(gè)別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動(dòng),預(yù)習(xí)工作做得不夠認(rèn)真,同時(shí)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問題的能力不強(qiáng),知識(shí)掌握不夠扎實(shí),運(yùn)用不夠靈活。從學(xué)生學(xué)習(xí)的`心理基礎(chǔ)和認(rèn)知特點(diǎn)來說:學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實(shí)際問題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進(jìn)行數(shù)學(xué)建模和簡(jiǎn)單的解釋應(yīng)用。雖然初一學(xué)生對(duì)消費(fèi)問題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗(yàn),由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中有些數(shù)量關(guān)系比較隱蔽,可能會(huì)產(chǎn)生一定的障礙。
(三)設(shè)計(jì)的目的及意義
一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對(duì)培養(yǎng)學(xué)生分析問題、解決問題的能力,體會(huì)數(shù)學(xué)的價(jià)值都有較大的意義.對(duì)實(shí)際生活中的不等量關(guān)系、數(shù)量大小比較等知識(shí),學(xué)生在小學(xué)階段已經(jīng)有所了解.但用不等式表示,并對(duì)不等式的相關(guān)性質(zhì)進(jìn)行探究,對(duì)學(xué)生是新的內(nèi)容。這些問題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動(dòng),先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果,可極大調(diào)動(dòng)學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實(shí)施教學(xué)時(shí),要根據(jù)課程改革的基本理念和教材特點(diǎn)組織教學(xué).結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過程。
(四)實(shí)施過程
【教學(xué)目標(biāo)】
知識(shí)目標(biāo):能進(jìn)一步熟練的解一元一次不等式,會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決簡(jiǎn)單的實(shí)際問題。
能力目標(biāo):通過觀察、實(shí)踐、討論等活動(dòng),積累利用一元一次不等式解決實(shí)際問題的經(jīng)驗(yàn),提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會(huì)不等式和方程同樣都是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的重要模型。
情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣;學(xué)會(huì)在解決問題時(shí),與其他同學(xué)交流,培養(yǎng)互相合作精神。
【重點(diǎn)難點(diǎn)】
重點(diǎn):一元一次不等式在實(shí)際問題中的應(yīng)用。
難點(diǎn):在實(shí)際問題中建立一元一次不等式的數(shù)量關(guān)系。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實(shí)際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
【教學(xué)過程】
創(chuàng)設(shè)情境,研究新知
老師知道,咱們班的學(xué)生特別聰明、特別棒,不等式這一章學(xué)習(xí)的特別好,下面讓我來檢測(cè)一下,看看那些同學(xué)學(xué)習(xí)的好?
(出示一個(gè)解不等式的問題,為后面新知作鋪墊)
一元一次不等式教案12
一、學(xué)生知識(shí)狀況分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在前面已經(jīng)學(xué)習(xí)過一次函數(shù),會(huì)求一次函數(shù)的表達(dá)式和畫一次函數(shù)的圖象,在本章前面幾節(jié)課中,又學(xué)習(xí)了一元一次不等式概念,具備了解一元一次不等式的基本技能;
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)利用一次函數(shù)和一元一次不等式解決了一些簡(jiǎn)單的現(xiàn)實(shí)問題,感受到了一次函數(shù)和一元一次不等式解決問題的必要性和作用;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。
二、教學(xué)任務(wù)分析
數(shù)學(xué)教學(xué)由一系列相互聯(lián)系而又漸次梯進(jìn)的課堂組成,因而具體的課堂教學(xué)也應(yīng)滿足于整個(gè)數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),或者說,數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實(shí)質(zhì)性聯(lián)系。本課屬于八下第一章第五節(jié)《一元一次不等式與一次函數(shù)》第一課時(shí)內(nèi)容,從屬于“數(shù)與代數(shù)”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于數(shù)與代數(shù)教學(xué)的遠(yuǎn)期目標(biāo),同時(shí)也應(yīng)力圖在學(xué)習(xí)中逐步達(dá)成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。教科書基于學(xué)生對(duì)一元一次不等式和一次函數(shù)認(rèn)識(shí)的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù),本節(jié)課的教學(xué)目標(biāo)是:
1、了解一元一次不等式與一次函數(shù)的關(guān)系.
2、會(huì)根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較
3、通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí).
4、訓(xùn)練大家能利用數(shù)學(xué)知識(shí)去解決實(shí)際問題的能力.
5、體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用.
三、教學(xué)過程分析
本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):活動(dòng)探究、合作學(xué)習(xí);第三環(huán)節(jié):運(yùn)用鞏固、練習(xí)提高;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:
上節(jié)課我們學(xué)習(xí)了一元一次不等式的解法,那么,是不是不等式的知識(shí)是孤立的呢?
活動(dòng)目的:以“舊”引“新”,由原有的知識(shí)為基礎(chǔ),探討新的內(nèi)容。
活動(dòng)效果:學(xué)生在回憶中探索本課時(shí)的內(nèi)容,從而降低了學(xué)生們“入室”的門檻.
第二環(huán)節(jié):活動(dòng)探究、合作學(xué)習(xí)
活動(dòng)內(nèi)容:
下面我們來探討一下一元一次不等式與一次函數(shù)的圖象之間的關(guān)系.
1.導(dǎo)探激勵(lì)
作出函數(shù)y=2x-5的圖象,觀察圖象回答下列問題.
。1)x取哪些值時(shí),2x-5=0? (3)x取哪些值時(shí),2x-5<0?
(2)x取哪些值時(shí),2x-5>0? (4)x取哪些值時(shí),2x-5>3?
學(xué)生活動(dòng):討論后回答。
活動(dòng)目的:通過作函數(shù)圖象、觀察函數(shù)圖象,進(jìn)一步理解函數(shù)概念,并從中初步體會(huì)一元一次不等式與一次函數(shù)的內(nèi)在聯(lián)系。
。1)當(dāng)y=0時(shí),2x-5=0,
x= , 當(dāng)x= 時(shí),2x-5=0.
。2)要找2x-5>0的x的值,也就是函數(shù)值y大于0時(shí)所對(duì)應(yīng)的x的值,從圖象上可知,y>0時(shí),圖象在x軸上方,圖象上任一點(diǎn)所對(duì)應(yīng)的x值都滿足條件,當(dāng)y=0時(shí),則有2x-5=0,解得x= .當(dāng)x> 時(shí),由y=2x-5可知 y>0.因此當(dāng)x> 時(shí),2x-5>0;
(3)同理可知,當(dāng)x< 時(shí),有2x-5<0;
。4)要使2x-5>3,也就是y=2x-5中的y大于3,那么過縱坐標(biāo)為3的點(diǎn)作一條直線平行于x軸,這條直線與y=2x-5相交于一點(diǎn)B(4,3),則當(dāng)x>4時(shí),有2x-5>3.
活動(dòng)效果:學(xué)生由討論可見,一次函數(shù)與一元一次方程、一元一次不等式之間有密切關(guān)系,當(dāng)函數(shù)值等于0時(shí)即為方程,當(dāng)函數(shù)值大于或小于0時(shí)即為不等式。
2.想一想
活動(dòng)內(nèi)容:
如果y=-2x-5,那么當(dāng)x取何值時(shí),y>0?
學(xué)生活動(dòng):在剛才討論的基礎(chǔ)上,學(xué)生嘗試解決問題。
活動(dòng)目的:通過具體問題初步體會(huì)一次函數(shù)的變化規(guī)律與一元一次不等式解集的聯(lián)系。
首先要畫出函數(shù)y=-2x-5的圖象,如圖:
從圖象上可知,圖象在x軸上方時(shí),圖象上每一點(diǎn)所對(duì)應(yīng)的y的值都大于0,而每一個(gè)y的值所對(duì)應(yīng)的x的值都在A點(diǎn)的左側(cè),即為小于-2.5的數(shù),由-2x-5=0,得x=-2.5,所以當(dāng)x取小于-2.5的值時(shí),y>0。
活動(dòng)效果:通過完成這題進(jìn)一步培養(yǎng)了學(xué)生的數(shù)形結(jié)合意識(shí)。
3.達(dá)測(cè)深化
活動(dòng)內(nèi)容:先畫出圖象,然后討論回答。
兄弟倆賽跑,哥哥先讓弟弟跑9 m,然后自己才開始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:
。1)何時(shí)弟弟跑在哥哥前面?
。2)何時(shí)哥哥跑在弟弟前面?
。3)誰先跑過20 m?誰先跑過100 m?
。4)你是怎樣求解的?與同伴交流.
活動(dòng)目的:感知不等式、函數(shù)、方程的不同作用與內(nèi)在聯(lián)系。
。劢猓菰O(shè)兄弟倆賽跑的時(shí)間為x秒.哥哥跑過的路程為y1,弟弟跑過的路程為y2,根據(jù)題意,得
y1=4x y2=3x+9
函數(shù)圖象如圖:
從圖象上來看:
(1)當(dāng)0<x<9時(shí),弟弟跑在哥哥前面;
。2)當(dāng)x>9時(shí),哥哥跑在弟弟前面;
。3)弟弟先跑過20m,哥哥先跑過100m;
。4)從圖象上直接可以觀察出(1)、(2)小題,在回答第(3)題時(shí),過y 軸上20這一點(diǎn)作x軸的平行線,它與y1=4x,y2=3x+9分別有兩個(gè)交點(diǎn),每一交點(diǎn)都對(duì)應(yīng)一個(gè)x值,哪個(gè)x的值小,說明用的時(shí)間就短.同理可知誰先跑過100 m.
活動(dòng)效果:絕大部分學(xué)生都能畫出函數(shù)圖象,并能借助函數(shù)圖象完成上述問題。
第三環(huán)節(jié):運(yùn)用鞏固、練習(xí)提高
1. 已知y1=-x+3,y2=3x-4,當(dāng)x取何值時(shí),y1>y2?你是怎樣做的?與同伴交流.
活動(dòng)內(nèi)容:讓學(xué)生分小組交流后作出解答,教師進(jìn)行點(diǎn)評(píng)。
活動(dòng)目的:一方面對(duì)上環(huán)節(jié)中解決此類問題的方法進(jìn)行鞏固,另一方面,讓學(xué)生在合作學(xué)習(xí)的.過程中進(jìn)一步體驗(yàn)一元一次不等式與一次函數(shù)的圖象之間的結(jié)合是解決此類問題核心所在.
解:如圖所示:
當(dāng)x取小于 的值時(shí),有y1>y2.
活動(dòng)效果:學(xué)生在解答上述問題時(shí),表現(xiàn)出極大的興趣, 90%的學(xué)生能夠順利完成.
第四環(huán)節(jié):課時(shí)小結(jié)
活動(dòng)內(nèi)容:
本節(jié)課討論了一元一次不等式與一次函數(shù)的關(guān)系,并且能根據(jù)一次函數(shù)的圖象求解不等式。
活動(dòng)目的:讓學(xué)生通過自我反思性活動(dòng)增強(qiáng)對(duì)相關(guān)知識(shí)和方法的理解水平。感受到數(shù)學(xué)的作用。
第五環(huán)節(jié):布置作業(yè)
讀一讀 習(xí)題1.6 1、2
四、教學(xué)反思
1、 函數(shù)、方程、不等式都是刻畫現(xiàn)實(shí)世界中量與量之間變化規(guī)律的重要模型。本節(jié)的目的就是通過具體例子滲透三者之間的內(nèi)在聯(lián)系,幫助學(xué)生從整體上認(rèn)識(shí)不等式,感受函數(shù)、方程、不等式的作用。本節(jié)課的教學(xué)過程中應(yīng)注意引導(dǎo)學(xué)生初步體會(huì)從整體中把握部分的思維方法,滲透函數(shù)、方程、不等式思想和數(shù)形結(jié)合等重要的數(shù)學(xué)思想,拓寬學(xué)生視野。相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)
2、教學(xué)過程中要為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中更利于教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解,以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。
3、注意改進(jìn)的方面:
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性。
一元一次不等式教案13
一、教學(xué)目標(biāo):
。ㄒ唬┲R(shí)與能力目標(biāo):
1.體會(huì)解不等式的步驟,體會(huì)比較、轉(zhuǎn)化的作用,數(shù)學(xué)教案-一元一次不等式和它的解法。
2.學(xué)生理解、鞏固一元一次不等式的解法。
3.用數(shù)軸表示解集,加深對(duì)數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實(shí)際問題中能夠體會(huì)將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會(huì)用數(shù)學(xué)語言表示實(shí)際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對(duì)一元一次方程的解法的復(fù)習(xí)和對(duì)不等式性質(zhì)的利用,導(dǎo)入對(duì)解不等式的討論。
3.學(xué)生體會(huì)通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實(shí)際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價(jià)值目標(biāo):
1.在教學(xué)過程中,學(xué)生體會(huì)數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會(huì)集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會(huì)不等式解集的'奇異的數(shù)學(xué)美。
二、教學(xué)重、難點(diǎn):
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對(duì)應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡(jiǎn)單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識(shí)的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會(huì)用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵(lì)學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計(jì)算機(jī)輔助教學(xué).
五、教學(xué)流程:
。ㄒ唬、復(fù)習(xí):
1. 給出方程:(x+4)/3=(3x-1)/2,抽學(xué)生演算。(注意步驟)
2.學(xué)生回憶不等式的性質(zhì),并說出解不等式的關(guān)鍵在哪里。
3. 讓學(xué)生舉一些不等式的例子。在學(xué)生歸納出一元一次不等式的概念后,據(jù)情況點(diǎn)評(píng)。
4. 新課導(dǎo)入:通過上節(jié)課的學(xué)習(xí),我們已經(jīng)掌握了解簡(jiǎn)單不等式的方法。這節(jié)課我們來共同探討解一元一次不等式的方法。
1.學(xué)生練習(xí),并說出解一元一次方程的步驟。
2.認(rèn)真思考,用自己的語言描述不等式的性質(zhì),說出解不等式的關(guān)鍵在于將不等式化為x≤a或x≥a的形式。
3.舉出不等式的例子,從中找出一元一次不等式的例子,歸納出一元一次不等式的概念。
4.明確本課目標(biāo),進(jìn)入對(duì)新課的學(xué)習(xí)。
1. 復(fù)習(xí)解一元一次方程的解法和步驟。
2.讓學(xué)生回顧性質(zhì),以加強(qiáng)對(duì)性質(zhì)的理解、掌握。
3.運(yùn)用類比思維
4.自然過度
(二)、新授:
1、 學(xué)生觀察課本第61頁例3 ,教師說明:解不等式就是利用不等式的三條基本性質(zhì)對(duì)不等式進(jìn)行變形的過程,初中數(shù)學(xué)教案《數(shù)學(xué)教案-一元一次不等式和它的解法》。提醒學(xué)生注意步驟。
2. 分析學(xué)生的解答,提醒學(xué)生在解不等式中常見的錯(cuò)誤:不等式兩邊同乘(除)同一個(gè)負(fù)數(shù)不等號(hào)方向要改變。
3. 激勵(lì)學(xué)生完成對(duì)(2) 解答,并找學(xué)生上講臺(tái)演示。
4.強(qiáng)調(diào)在數(shù)軸上表示解集時(shí)的關(guān)鍵
5.出示練習(xí)。
6.鼓勵(lì)學(xué)生討論課本第61頁的例4 。提示學(xué)生:首先將簡(jiǎn)單的文字表達(dá)轉(zhuǎn)化成數(shù)學(xué)語言。
7.指導(dǎo)學(xué)生歸納步驟。
8.補(bǔ)充適當(dāng)?shù)木毩?xí),以鞏固學(xué)生所學(xué)。
9 . 類比解一元一次方程,仔細(xì)觀察,理解用不等式的性質(zhì)(3)解不等式的原理,并掌握用數(shù)軸表示不等式的解的方法。
10.學(xué)生類比解一元一次方程的步驟,與解一元一次不等式的一般步驟,同時(shí)完成練習(xí)。
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教師提示,組內(nèi)討論后,檢查自己的解答過程,彌補(bǔ)不足,進(jìn)一步體會(huì)解一元一次不等式的方法。
12.理解、體會(huì)在數(shù)軸上表示解集的方法和關(guān)鍵。
13.學(xué)生組內(nèi)討論完成。
14.認(rèn)真完成對(duì)例題的解答,在教師的提示下找到不等量關(guān)系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
15.組內(nèi)討論并歸納后,看教師所出示的課件。
16.認(rèn)真完成練習(xí)。
17.電腦逐步演示,讓學(xué)生從演示過程中理解不等式的解法。
18.鞏固對(duì)一般解法的理解、掌握。
19.通過類比歸納,提高學(xué)生的自學(xué)能力。
20.讓學(xué)生明白不等式的解集是一個(gè)范圍,而方程的解是一個(gè)值。
21.培養(yǎng)學(xué)生的擴(kuò)展能力。
22.類比一元一次方程的解法以加深對(duì)一元一次不等式解法的理解。
23.通過動(dòng)手、動(dòng)腦使所學(xué)知識(shí)得到鞏固。
24.鞏固所學(xué)。
(三)、小結(jié)與鞏固:
1.引導(dǎo)學(xué)生對(duì)本課知識(shí)進(jìn)行歸納。
2.學(xué)生完成后。
3.練習(xí)與鞏固。
1.學(xué)生組內(nèi)討論小結(jié),組長(zhǎng)幫助組員對(duì)知識(shí)鞏固、提升。
2.學(xué)生加強(qiáng)理解。
3.完成練習(xí):書63頁第4題,第5(2、4)題。
1.培養(yǎng)學(xué)生總結(jié)、歸納的能力。
2.點(diǎn)撥學(xué)生對(duì)知識(shí)的理解與掌握。
3.鞏固本課所學(xué)。
一元一次不等式教案14
〖教學(xué)目標(biāo)〗
1、理解一元一次不等式組的概念.
2、理解不等式組的解的概念.
3、會(huì)解由兩個(gè)一元一次不等式組成的不等式組,并會(huì)用數(shù)軸確定解.
4、培養(yǎng)學(xué)生類比推理能力.
〖教學(xué)重點(diǎn)與難點(diǎn)〗
教學(xué)重點(diǎn):一元一次不等式組的解法.
教學(xué)難點(diǎn):例2較為復(fù)雜,幾乎包括了解一元一次不等式的全部步驟,是本節(jié)教學(xué)的難點(diǎn),用數(shù)軸表示一元一次不等式組的解也是難點(diǎn)。
〖教學(xué)過程〗
一.引入
1.想一想:某單位從超市購買了墨水筆和圓珠筆共15桶,所付金額超過570元,但不到580元。已知這兩種筆每桶的單價(jià)為圓珠筆34.90元/支,墨水筆44.90元/支。設(shè)購買圓珠筆X桶,你能列出幾個(gè)不等式?
2.學(xué)生活動(dòng):找出已知條件,列出所有不等關(guān)系式,互相討論,類推概念,鼓勵(lì)學(xué)生通過觀察,分析,補(bǔ)充解決問題。
3.最后教師總結(jié)兩個(gè)不等式。
如設(shè)購買圓珠筆的桶數(shù)為X,則:
二.新課
1.一元一次不等式組:一般地,由幾個(gè)同一個(gè)未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組。像上面就是一元一次不等式組,再
例如:
都是一元一次不等式組.
2.不等式組解的概念:組成不等式組的各個(gè)不等式的解的公共部分就是不等式組的解.當(dāng)它們沒有公共部分時(shí).我們稱這個(gè)不等式組無解.
3.做一做:
例1.解一元一次不等式組
解:解不等式①,
得:
X>-1
解不等式②,
得:
X≤6
把
、
②兩個(gè)不等式的解表示在數(shù)軸上,如下圖:
-1
6
所以原不等式組的解是-1 4.應(yīng)用拓展:解由兩個(gè)一元一次不等式組成的'不等式組,在取各個(gè)不等式的解公共部分時(shí),有幾種不同情況嗎? 若a 用數(shù)軸試一試. 。ㄔO(shè)a 一般由兩個(gè)一元一次不等式組成的不等式組由四種基本類型確定,它們的解集、數(shù)軸表示如下表 一元一次 不等式組 解集 圖示 口訣 x>a x>b x>b 大大取大 x x x 小小取小 x>a x a 比小大,比大小,中間找 x x>b 無解 比小小,比大大,解不了(無解) 5.嘗試反饋:試一試,利用數(shù)軸分別求出滿足下列各組不等式組的x值的公共部分: 6.探索較復(fù)雜的不等式組的解法: 例2. 解一元一次不等式組 解:由不等式①,去擴(kuò)號(hào)得 3-5X>X-4X+2 移項(xiàng),整理得 -2X>-1 所以X< 解不等式②,去分母得 3X-2>10-2X 移項(xiàng),整理得 5X>12 所以X> 把①,②兩個(gè)不等式的解表示在數(shù)軸上. 1 2 所以原不等式組無解. 7.通過范例,幫助學(xué)生總結(jié)解一元一次不等式組的步驟: (1)依次解各個(gè)一元一次不等式. (2)把各個(gè)一元一次不等式的解分別表示在同一數(shù)軸上. (3)根據(jù)解在數(shù)軸上的表示確定不等式組的解. 三.鞏固 (學(xué)生活動(dòng),與同伴交流自己的問題和解決問題的過程) 1.解下列一元一次不等式組: 2.分別求出本節(jié)開頭問題中購買墨水筆和圓珠筆的桶數(shù) 四.歸納 1.學(xué)生談本節(jié)課的收獲:優(yōu)等生談學(xué)到什么知識(shí),上進(jìn)生談體會(huì); 2.教師小結(jié):這節(jié)課主要學(xué)習(xí)了一元一次不等式組及不等式組的解的有關(guān)概念,要求會(huì)解有兩個(gè)一元一次不等式組成的一元一次不等式組,并會(huì)用數(shù)軸確定解集;也可以利用口訣“大大取大,小小取小,比小大比大小取中間,比大大比小小無解”來求不等式組的解。 五.布置作業(yè) 學(xué)習(xí)目標(biāo): 1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。 2、會(huì)解由兩個(gè)一元一次不等式組成的一元一次不等式組,能借助數(shù)軸正確的表示一元一次不等式組的解集。 3、通過探討一元一次不等式組的解法以及解集的確定,滲透轉(zhuǎn)化思想,進(jìn)一步感受數(shù)形結(jié)合在解決問題中的作用。 4、體驗(yàn)不等式在實(shí)際問題中的作用,感受數(shù)學(xué)的應(yīng)用價(jià)值。 學(xué)習(xí)重點(diǎn): 一元一次不等式組的解法 學(xué)習(xí)難點(diǎn): 一元一次不等式組解集的確定。 一、學(xué)前準(zhǔn)備 【回顧】 1.解不等式 ,并把解集在數(shù)軸上表示出來。 【預(yù)習(xí)】 1、 認(rèn)真閱讀教材34-35頁內(nèi)容 2、____________ _ 叫做一元一次不等式組。 ______ _______叫做一元一次不等式組的解集。 叫做解不等式組。 4、求下列兩個(gè)不等式的解集,并在同一條數(shù)軸上表示出來 ① 二、探究活動(dòng) 【例題分析】 例1. (問題1)題中的買5筒錢不夠,買4筒錢又多的含義是什么? 例2. (問題2)題中的相等關(guān)系是什么?不等關(guān)系又是什么? 例3. 解不等式組 【小結(jié)】 不等式組解集口訣 同大取大,同小取小,大小小大中間找,大大小小解不了 一元一次不等式組解集四種類型如下表: 不等式組(a (1)xb xb 同大取大 (2)x x (3)xax a (4)xb 無解 大大小小解不了 【課堂檢測(cè)】 1、不等式組 的解集是( ) A. B. C. D.無解 2、不等式組 的解集為( ) A.-1 3、不等式組 的解集在數(shù)軸上表示正確的.是( ) A B C D 4、寫出下列不等式組的解集:(教材P35練習(xí)1) 三、自我測(cè)試 1.填空 (1)不等式組x-1 的解集是_ __; (2)不等式組x-2 的解集 ; (3)不等式組x1 的解集是__ __; (4)不等式組x-4 解集是___ ___。 2、解下列不等式組,并在數(shù)軸上表示出來 (1) 四、應(yīng)用與拓展 若不等式組 無解,則m的取值范圍是 ____ _____. 【一元一次不等式教案】相關(guān)文章: 一元一次不等式教學(xué)反思06-24 一元一次不等式組的教學(xué)反思01-15 一元一次不等式組教學(xué)反思03-06 一元一次不等式組的解法教學(xué)反思03-06 一次函數(shù)與一元一次不等式教學(xué)反思10-22 高中不等式教案11-05 一元一次方程應(yīng)用教案01-28 解一元一次方程教案02-25 一次不等式組的教學(xué)反思01-16一元一次不等式教案15