亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

有理數(shù)的乘法數(shù)學教案

時間:2023-06-26 11:40:34 教案 我要投稿
  • 相關推薦

有理數(shù)的乘法數(shù)學教案

  作為一名辛苦耕耘的教育工作者,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。寫教案需要注意哪些格式呢?下面是小編整理的有理數(shù)的乘法數(shù)學教案,僅供參考,歡迎大家閱讀。

有理數(shù)的乘法數(shù)學教案

有理數(shù)的乘法數(shù)學教案1

  一、教材分析

  有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算。它既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎。對后續(xù)知識的學習也是至關重要的。

  二、學情分析

  對于初一學生來說,他們雖已通過學習有理數(shù)的加減法具備了初步探究問題的能力,對符號問題也有了一定的認識,但是對知識的主動遷移能力還比較弱,因此,只要引導學生確定了“積”的符號,實質上就是小學算術中數(shù)的乘法運算了,突破了有理數(shù)乘法的符號法則這個難點,則對于有理數(shù)乘法的運算學生就不難掌握了。

  三、教學目標 (核心素養(yǎng)立意)

  1.使學生理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則,并能準確地進行有理數(shù)的乘法運算。

  2.初步培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、和解決問題的能力。

  3.通過教學,滲透化歸、分類討論等數(shù)學思想方法,激發(fā)學生學習數(shù)學、應用數(shù)學的興趣,(4)傳授知識的同時,注意培養(yǎng)學生良好的學習習慣和勇于探索的精神。

  四、教學重、難點

  重點:有理數(shù)的乘法法則。

  難點:有理數(shù)乘法的符號法則

  五、教學策略

  我在本節(jié)課的教學中采用誘思探究式教學法,并應用多媒體現(xiàn)代教學手段,以學生為主體,通過引導啟發(fā)、自主探究、點撥歸納完成教學任務,實現(xiàn)教學目標。

  六、教學過程(設計為七個環(huán)節(jié))

  (一)復習導入 創(chuàng)設情境

  我首先出示幾個相同負數(shù)和的計算題,利用乘法的意義很自然地引出負數(shù)與正數(shù)相乘的新內容,以形成知識的.遷移。進而引入本節(jié)課題,以問題引領來激發(fā)學生求知欲。

 。ǘ⿴熒 探究新知

  要求學生自主學習課本內容,完成課文中的填空。我給與學生充足的時間和空間。 通過自主學習,小組合作,教師點撥引導學生從有理數(shù)分為正數(shù)、零、負數(shù)三類的角度,區(qū)分出有理數(shù)乘法的情況有五種:(正×正、正×0、正×負、負×0、負×負)引導學生根據(jù)以上實例的運算結果,從積的符號和絕對值兩方面準確地歸納出有理數(shù)的乘法的符號法則和有理數(shù)乘法的運算法則。(板書:法則)(確定有理數(shù)乘法運算的兩步模型:先定符號,在求絕對值)

  這樣設計的目的是

 。1)構造這組有規(guī)律的算式讓學生通過觀察,來發(fā)現(xiàn)算式和結果在符號、絕對值方面的關系,找到乘法結果的符號規(guī)律,突破本節(jié)課的難點。同時又突出了本節(jié)課的教學重點。

 。2)通過比較、分析、概括、討論、展示,滲透分類討論和從特殊歸納一般的數(shù)學思想和方法,提高學生整合知識的能力。使學生知道”如何觀察”“如何發(fā)現(xiàn)規(guī)律”。

 。ㄈ┓治龇▌t 掌握實質

  (有了以上的認識)通過設置問題4,讓學生帶著以上的結論,認真觀察(-5)×(-3)這個算式,首先確定積的符號(同號得正,先定號),再確定積的絕對值(5×3=15,再求值)。第二小題讓學生仿照第一小題填空、解答,理解法則的實質,真正掌握本節(jié)課的重點。這樣設計是為了再現(xiàn)知識的形成過程,避免單純的記憶,使學習過程成為一種再創(chuàng)造的過程。

 。ㄋ模┙鉀Q問題 綜合運用

  通過習題(小試牛刀)的計算,既鞏固了有理數(shù)乘法的法則,又明確了倒數(shù)的定義,(板書:倒數(shù)-乘積是1的兩個數(shù)互為倒數(shù))。在有理數(shù)范圍內仍有意義。本環(huán)節(jié)通過讓學生獨立思考、分組討論,完成填空,使學生有效的鞏固重點化解難點。

 。ㄎ澹w驗成功 享受快樂

  利用摸牌游戲,抓住學生對競爭充滿興趣的心理特征,激發(fā)學生的學習興趣,用搶答題的形式,使學生的眼、耳、腦、口得到充分的調動,并讓學生在搶答中體驗成功,享受快樂。通過學生參與活動,調動學生學習的積極性。同時讓學生通過本環(huán)節(jié)進一步理解有理數(shù)乘法法則,并在實際問題中進一步培養(yǎng)學生應用數(shù)學的意識,體現(xiàn)數(shù)學的應用價值。這也是數(shù)學核心素養(yǎng)的要求。

  (六)總結收獲 暢談體會

  在課堂臨近尾聲時,我鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。讓學生充分發(fā)表自己的感受,并相互補充。 及時有效的回顧小結,進一步明確本節(jié)課的主要內容、思想和方法。這樣設計的目的是培養(yǎng)學生的歸納能力和語言表達能力,以及善于反思的好習慣。讓學生品嘗收獲的喜悅,堅定今后學習數(shù)學的信心。

 。ㄆ撸┎贾米鳂I(yè) 鞏固深化

  七、課后反思

  在課堂教學過程中,我始終堅持以觀察為起點,以問題為主線,以能力培養(yǎng)為核心的宗旨;遵照教師為主導,學生為主體,訓練為主線的教學原則;遵循由已知到未知、由淺入深、由易到難的認知規(guī)律;采用誘思探究教學法,把課堂還給學生,讓他們主動去參與,去探究,去分析。通過創(chuàng)設、引導、滲透、歸納等活動讓學生在不知不覺中掌握重點,突破難點,發(fā)展能力,養(yǎng)成良好的數(shù)學學習習慣。更好的促進學生全面、持續(xù)、和諧的發(fā)展。本節(jié)課的設計一定還存在不少的紕漏和缺陷,敬請各位同仁批評指正。謝謝大家!

有理數(shù)的乘法數(shù)學教案2

  一、 學情分析:

  在此之前,本班學生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學生能在教師指導下探索問題。由于學生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。

  二、 課前準備

  把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

  三、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  四、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的.理解。

  五、 教學過程

  1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?

  學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

  a. 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2 ×3=

  b. -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

 。-2) ×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結果是人仍在原處。

  (2)學生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)= 同號得

 。-)×(+)= 異號得

  (+)×(-)= 異號得

 。-)×(-)= 同號得

  b.積的絕對值等于 。

  c.任何數(shù)與零相乘,積仍為 。

 。3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學生述說每一步理由。

 。2)引導學生觀察、分析例1中(3)(4)小題兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

 。3)學生做 P76 練習1(1)(3),教師評析。

  (4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ; 當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。

  4、 討論對比,使學生知識系統(tǒng)化。


有理數(shù)乘法有理數(shù)加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號得負取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)×3= -6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零得零得任何數(shù)

  5、 分層作業(yè),鞏固提高。

有理數(shù)的乘法數(shù)學教案3

  一、知識與技能

  (1)能確定多個因數(shù)相乘時,積的符號,并能用法則進行多個因數(shù)的乘積運算。

  (2)能利用計算器進行有理數(shù)的乘法運算。

  二、過程與方法

  經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學生主動探索,積極思考的學習興趣。

  教學重、難點與關鍵

  1.重點:能用法則進行多個因數(shù)的乘積運算。

  2.難點:積的符號的確定。

  3.關鍵:讓學生觀察實例,發(fā)現(xiàn)規(guī)律。

  教具準備

  投影儀。

  四、 教學過程

  1.請敘述有理數(shù)的乘法法則。

  2.計算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

  五、新授

  1.多個有理數(shù)相乘,可以把它們按順序依次相乘。

  例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;

  又如:(+2)[(-78)]=(+2)(-26)=-52.

  我們知道計算有理數(shù)的乘法,關鍵是確定積的符號。

  觀察:下列各式的積是正的還是負的?

  (1)234 (2)234(-4)

  (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

  易得出:(1)、(3)式積為負,(2)、(4)式積為正,積的符號與負因數(shù)的`個數(shù)有關。

  教師問:幾個不是0的數(shù)相乘,積的符號與負因數(shù)的個數(shù)之間有什么關系?

  學生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關,當負因數(shù)的個數(shù)為負數(shù)時,積為負數(shù);當負因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。

  2.多個不是0的有理數(shù)相乘,先由負因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。

有理數(shù)的乘法數(shù)學教案4

  教學目標

  1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;

  2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學生掌握多個有理數(shù)相乘的積的符號法則;

  3。三個或三個以上不等于0的有理數(shù)相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;

  4。通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學生的運算能力;

  5。本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學生感知到數(shù)學知識來源于生活,并應用于生活。

  教學建議

  (一)重點、難點分析

  重點:

  是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學習除法運算和乘方運算的基礎。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y合因數(shù)可以簡化運算過程。

  難點:

  理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。

 。ǘ┲R結構

  (三)教法建議

  1。有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。

  2。兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”。絕對值相乘也就是小學學過的算術乘法。

  3。基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。

  4。幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。

  5。小學學過的乘法交換律、結合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。

  6。如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。

  教學設計示例

  有理數(shù)的乘法(第一課時)

  教學目標

  1。使學生在了解有理數(shù)的乘法意義基礎上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

  2。通過有理數(shù)的乘法運算,培養(yǎng)學生的運算能力;

  3。通過教材給出的行程問題,認識數(shù)學來源于實踐并反作用于實踐。

  教學重點和難點

  重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;

  難點:有理數(shù)乘法法則的理解。

  課堂教學過程設計

  一、從學生原有認知結構提出問題

  1。計算(—2)+(—2)+(—2)。

  2。有理數(shù)包括哪些數(shù)?小學學習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))

  3。有理數(shù)加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)[

  4。根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數(shù)問題,符號的確定)

  二、師生共同研究有理數(shù)乘法法則

  問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?

  解:3×2=6(厘米)①

  答:上升了6厘米。

  問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

  解:—3×2=—6(厘米)②

  答:上升—6厘米(即下降6厘米)。

  引導學生比較①,②得出:

  把一個因數(shù)換成它的相反數(shù),所得的'積是原來的積的相反數(shù)。

  這是一條很重要的結論,應用此結論,3×(—2)=?(—3)×(—2)=?(學生答)

  把3×(—2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應是原來的積“6”的相反數(shù)“—6”,即3×(—2)=—6。

  把(—3)×(—2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應是原來的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。

  此外,(—3)×0=0。

  綜合上面各種情況,引導學生自己歸納出有理數(shù)乘法的法則:

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

  任何數(shù)同0相乘,都得0。

  繼而教師強調指出:

  “同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學學習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”。

  用有理數(shù)乘法法則與小學學習的乘法相比,由于介入了負數(shù),使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了。

  因此,在進行有理數(shù)乘法時,需要時時強調:先定符號后定值。

  三、運用舉例,變式練習

  例某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。

 。1)t小時后溫度是多少?

  (2)當a,t分別是下列各數(shù)時的結果:

  ①a=3,t=2;②a=—3,t=2;

 、赼=3,t=—2;④a=—3,t=—2;

  教師引導學生檢驗一下(2)中各結果是否合乎實際。

  課堂練習

  1。口答:

 。1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;

 。4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);

  (7)(—6)×0;(8)0×(—6);

  2?诖穑

 。1)1×(—5);(2)(—1)×(—5);(3)+(—5);

 。4)—(—5);(5)1×a;(6)(—1)×a。

  這一組題做完后讓學生自己總結:一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調指出,a可以是正數(shù),也可以是負數(shù)或0;—a未必是負數(shù),也可以是正數(shù)或0。

  3。填空:

 。1)1×(—6)=______;(2)1+(—6)=_______;

 。3)(—1)×6=________;(4)(—1)+6=______;

  (5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;

 。9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。

  4。判斷下列方程的解是正數(shù)還是負數(shù)或0:

 。1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。

  四、小結

  今天主要學習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”。

  五、作業(yè)

  1。計算:

 。1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);

  (4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。

  2。填空(用“>”或“<”號連接):

  (1)如果a<0,b<0,那么ab________0;

 。2)如果a<0,b<0,那么ab_______0;

 。3)如果a>0時,那么a____________2a;

 。4)如果a<0時,那么a__________2a。

  探究活動

  問題:桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經(jīng)過若干次翻轉,把它們翻成杯口全部朝下?

  答案:“±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。

  道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。

有理數(shù)的乘法數(shù)學教案5

  一、知識與技能

  經(jīng)歷探索有理數(shù)乘法法則過程,掌握有理數(shù)的乘法法則,能用法則進行有理數(shù)的乘法。

  二、過程與方法

  經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展學生歸納、猜想、驗證等能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學生積極探索精神,感受數(shù)學與實際生活的聯(lián)系。

  教學重、難點與關鍵

  1.重點:應用法則正確地進行有理數(shù)乘法運算。

  2.難點:兩負數(shù)相乘,積的符號為正與兩負數(shù)相加和的符號為負號容易混淆。

  3.關鍵:積的符號的確定。

  教具準備

  投影儀。

  四、教學過程

  一、引入新課

  在小學,我們學習了正有理數(shù)有零的乘法運算,引入負數(shù)后,怎樣進行有理數(shù)的'乘法運算呢?

  五、新授

  課本第28頁圖1.4-1,一只蝸牛沿直線L爬行,它現(xiàn)在的位置恰在L上的點O。

  (1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  (2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  (3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  (4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負,向右為正;為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負,現(xiàn)在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。

有理數(shù)的乘法數(shù)學教案6

  一、學情分析:

  1、學生的知識技能基礎:學生在小學已經(jīng)學習過非負有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學習了數(shù)軸、相反數(shù)、絕對值的有關概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學會了由運算解決簡單的實際問題,具備了學習有理數(shù)乘法的知識技能基礎。

  2、學生的活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學活動經(jīng)驗,同時在以前的學習中,學生曾經(jīng)歷了合作學習和探索學習的過程,具有了合作和探索的意識。

  二、 教材分析:

  教科書基于學生已掌握了有理數(shù)加法、減法運算法則的基礎上,提出了本節(jié)課的具體學習任務:發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。

  本節(jié)課的數(shù)學目標是:

 。、經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;

 。病W會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:

  三、教學過程設計:

  本節(jié)課設計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結論;第三環(huán)節(jié):驗證明確結論;第四環(huán)節(jié):運用鞏固,練習提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):問題情境,引入新課

  問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學生討論思考如何解答。

 。ǎ玻┤绻谜柋硎舅簧仙秘撎柋硎舅幌陆担懻撍奶旌,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。

  設計意圖:培養(yǎng)學生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。

  第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結論

  問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式

 。ǎ场粒矗剑保玻敲聪铝幸唤M算式的結果應該如何計算?請同學們思考:

 。ǎ常粒常剑撸撸撸撸;

 。ǎ常粒玻剑撸撸撸撸;

 。ǎ常粒保剑撸撸撸撸;

  (-3)×0=_____。

 。ǎ玻┊斖瑢W們寫出結果并說明道理時,讓學生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結果:

 。ǎ常粒ǎ保剑撸撸撸撸;

 。ǎ常粒ǎ玻剑撸撸撸撸撸

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前設計意圖:以算式求解和探究問題的形式引導學生逐步深入的觀察思考,從負數(shù)與非負數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負數(shù)與負數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學生的觀察能力,猜想能力,抽象能力和表述能力。

  教后反思事項:(1)本環(huán)節(jié)的設計理念是學生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結論。但在實際過程中,學生對結論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責備,而應循循善誘,順勢引導,幫助學生盡可能簡練準確的`表述,也不要擔心時間不足而代替學生直接表述法則。

 。ǎ玻┱故緝山M算式時,注意板書藝術,把算式豎排,并對齊書寫,這樣易于學生觀察特點,發(fā)現(xiàn)規(guī)律。

  第三環(huán)節(jié):驗證明確結論

  問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學生完成。

 。础粒ǎ矗剑撸撸撸撸;

 。础粒ǎ常剑撸撸撸撸;

 。础粒ǎ玻剑撸撸撸撸;

 。础粒ǎ保剑撸撸撸撸;

 。ā矗粒埃剑撸撸撸撸;

 。ā矗粒保剑撸撸撸撸撸

  (—4)×2=_____;

 。ā矗粒ǎ保剑撸撸撸撸撸

 。ā矗粒ǎ玻剑撸撸撸撸摺

  教前設計意圖:這個環(huán)節(jié)的設計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學生知道從特例歸納得到的結論不一定適合

  一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習和熟悉過程。

  教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學中應該設計這個環(huán)節(jié),確實讓學生體驗經(jīng)歷驗證過程。

 。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。

 。ǎ常┰谟贸朔ǚ▌t計算時,要注意其運算步驟與加法運算一樣,都是先確定結果的符號,再進行絕對值的運算。另外還應注意:法則中的“同號得正,異號得負”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。

  第四環(huán)節(jié):運用鞏固,練習提高

  活動內容:

  (1)1。計算:

  ⑴(-4)×5; ⑵(5-)×(-7);

 、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);

 。ǎ玻。計算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“議一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?

 。ǎ矗┯嬎悖

 、牛ǎ8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

 、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前設計意圖:對有理數(shù)乘法法則的鞏固和運用,練習和提高.

  教后反思事項:(1)學生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應注明理由,運算熟練后,可不要求書寫每一步的理由;

  (2)例2講解之后,要啟發(fā)學生完成"議一議"的內容,鼓勵學生通過對例2的運算結果觀察分析,用自己的語言表達所發(fā)現(xiàn)的規(guī)律,學生有困難時,教師可設置如下一組算式讓學生計算后觀察發(fā)現(xiàn)規(guī)律,而不應代替學生完成這個任務。

  (-1)×2×3×4=_____;

 。ǎ保粒ǎ玻粒场粒矗剑撸撸撸撸撸

 。ǎ保粒ǎ玻粒ǎ常粒矗剑撸撸撸撸;

 。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸撸

 。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸。

  通過對以上算式的計算和觀察,學生不難得出結論:多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當然這段語言,不需要讓學習背誦,只要理解會用即可。

  第五環(huán)節(jié):感悟反思課堂

  問題

  1.本節(jié)課大家學會了什么?

  2.有理數(shù)乘法法則如何敘述?”

  3.有理數(shù)乘法法則的探索采用了什么方法?

  4.你的困惑是什么

  教前設計意圖:培養(yǎng)學生的口頭表達能力,提高學生的參與意識。激勵學生展示自我。

  教后反思事項:學生時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調準確記憶,而應鼓勵學生大膽發(fā)言,同時教師可用準確的語言適時的加以點撥。

  第六環(huán)節(jié):布置作業(yè)

  鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1

  預習作業(yè);略

  四、教學反思:

  1、設計條理的問題串,使觀察、猜想、驗證水到渠成

  2、相信學生的探索能力。本節(jié)課的內容適合學生探索,只要教師適當引導,學生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。

 。、合理使用多媒體教學手段可以彌補課堂時間的不足,但絕不能代替必要的板書。

有理數(shù)的乘法數(shù)學教案7

  一、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  二、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的'理解。

  三、 教學過程

  1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

  ① 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

 。-2) ×(-3)=

 。2)學生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

  (+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

  ②積的絕對值等于 。

 、廴魏螖(shù)與零相乘,積仍為 。

 。3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學生述說每一步理由。

  (2)引導學生觀察、分析例子中兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

  (3)學生做練習,教師評析。

 。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數(shù)相乘的符號法則。

有理數(shù)的乘法數(shù)學教案8

  一、教學目標

  1.使學生在了解有理數(shù)乘法的意義的基礎上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;

  2.培養(yǎng)學生觀察、歸納、概括及運算能力

  3 使學生掌握多個有理數(shù)相乘的積的符號法則;

  二、教學重點和難點

  重點:有理數(shù)乘法的運算.

  難點:有理數(shù)乘法中的符號法則.

  三.教學手段

  現(xiàn)代課堂教學手段

  四.教學方法

  啟發(fā)式教學

  五、教學過程

  (一)、研究有理數(shù)乘法法則

  問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?

  解①32=6

  答:上升了6厘米.

  問題2 水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?

  解:(-3)2=-6

  答:上升-6厘米(即下降6厘米).

  引導學生比較①,②得出:

  把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

  這是一條很重要的`結論,應用此結論,3(-2)=?(-3)(-2)=?(學生答)

  把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應是原來的積6的相反數(shù)-6,即3(-2)=-6.

  把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應是原來的積-6的相反數(shù)6,即(-3)(-2)=6.

【有理數(shù)的乘法數(shù)學教案】相關文章:

有理數(shù)的乘法教案06-20

《有理數(shù)的乘法》教學反思04-22

《有理數(shù)乘法》教學反思05-24

有理數(shù)的乘法教學反思03-16

有理數(shù)的乘法教案15篇08-26

分數(shù)乘法數(shù)學教案02-13

《乘法分配律》數(shù)學教案01-02

《有理數(shù)》說課稿11-22

有理數(shù)減法教案04-04