- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案
作為一名教學(xué)工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那要怎么寫好教案呢?以下是小編為大家整理的二次根式教案,歡迎閱讀與收藏。
二次根式教案1
活動(dòng)1、提出問題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的'不能合并,通過對(duì)以上幾個(gè)題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
、僭O(shè)=,類比合并同類項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
、巯然(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
二次根式教案2
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計(jì)
小結(jié)、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的技巧.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.
例1 說出下列算式的運(yùn)算步驟和順序:
。1) (先乘除,后加減).
(2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的`運(yùn)算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?
引入新課題.
【引入新課】
化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問題、化簡(jiǎn)的依據(jù).式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.
二次根式教案3
一、案例背景:
本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問題打好基礎(chǔ)。
二、案例描述:
1、學(xué)習(xí)任務(wù)分析:
通過對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實(shí)際問題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問題、解決問題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的`規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問題的過程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點(diǎn)分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。
案例反思:
1.下列代數(shù)式若能作為二次根式的被開方數(shù),則求出字母的取值范圍?若不能,則說明理由。1-2a-2a2-1(2+a)2-(a-5)2
以往對(duì)這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢(shì)回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2.合作活動(dòng):
第一位同學(xué)——出題者:請(qǐng)你按表中的要求寫完后,按順時(shí)針方向交給下一位同學(xué);
第二位同學(xué)——解題者:請(qǐng)你按表中的要求解完后,按順時(shí)針方向交給下一位同學(xué);
第三位同學(xué)——批改者:請(qǐng)你用藍(lán)筆批改,若有錯(cuò)誤,請(qǐng)與解題者商議并請(qǐng)其訂正,完成交給你信任的同學(xué)用紅筆復(fù);
第四位同學(xué)——復(fù)查者:請(qǐng)你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
第一個(gè)二次根式:
1.要使式子的值為實(shí)數(shù),求x的取值范圍.
2.寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3.寫出x的一個(gè)值,使式子的值為無理數(shù),并求出這個(gè)無理數(shù)。
第二個(gè)二次根式:
1.要使式子的值為實(shí)數(shù),求x的取值范圍。
2.寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3.寫出x的一個(gè)值,使式子的值為無理數(shù),并求出這個(gè)無理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式教案4
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過程設(shè)計(jì)
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的'結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
。1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
(1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對(duì) 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1. ; ; .
【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.
2.下列運(yùn)算正確的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計(jì)算: .
【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.
二次根式教案5
教學(xué)目標(biāo)
1、根據(jù)了解二次根式的概念:
2、知道被開方數(shù)必須是非負(fù)數(shù)的理由;
3、能運(yùn)用二次根式的性質(zhì)解決實(shí)際問題
4新設(shè)計(jì):我們知道,用字母表示數(shù),可以將字母和數(shù)一起運(yùn)算。前面已經(jīng)學(xué)習(xí)了單項(xiàng)式、多項(xiàng)式和分式等概念和運(yùn)算,可以發(fā)現(xiàn),式的運(yùn)算本質(zhì)上就是對(duì)符號(hào)運(yùn)用運(yùn)算律所進(jìn)行的形式運(yùn)算。本節(jié)課主要討論如何對(duì)數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運(yùn)算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識(shí)。
5、新設(shè)計(jì):?jiǎn)栴}1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。
6、學(xué)情分析:本班40名學(xué)生,成績(jī)參差不齊,程度差距很大,鑒于此,對(duì)于學(xué)生要分層教學(xué)。
7、重點(diǎn)難點(diǎn):1.重點(diǎn):形如(a≥0)的式子叫做二次根式的概念;2.難點(diǎn):運(yùn)用二次根式的性質(zhì)解決實(shí)際問題。
8、教學(xué)過程6.1第一學(xué)時(shí)教學(xué)活動(dòng)
活動(dòng)1【講授】二次根式
教學(xué)過程設(shè)計(jì)
創(chuàng)設(shè)情境,提出問題
引言
我們知道,用字母表示數(shù),可以將字母和數(shù)一起運(yùn)算。前面已經(jīng)學(xué)習(xí)了單項(xiàng)式、多項(xiàng)式和分式等概念和運(yùn)算,可以發(fā)現(xiàn),式的運(yùn)算本質(zhì)上就是對(duì)符號(hào)運(yùn)用運(yùn)算律所進(jìn)行的形式運(yùn)算。本節(jié)課主要討論如何對(duì)數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運(yùn)算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識(shí)。
問題1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。
師生活動(dòng):給學(xué)生充分思考和討論時(shí)間,讓他們回憶有關(guān)平方根和算術(shù)平方根的有關(guān)知識(shí),才能在此基礎(chǔ)上再進(jìn)一步研究二次根式概念。
設(shè)計(jì)意圖:回顧已學(xué)的數(shù)和式的運(yùn)算,叢數(shù)和式運(yùn)算的完整性角度提出要研究的問題,讓學(xué)生了解本章將要學(xué)習(xí)的主要內(nèi)容,起到先行組織者的作用。
問題2請(qǐng)思考下列問題
面積為3的正方形的邊長(zhǎng)為,面積為S的正方形邊長(zhǎng)為。
一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,面積為130㎡,則它的寬為m。
一個(gè)物體從高處自由落下,落在地面所用的時(shí)間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h=5t2。如果用含有h的式子表示t,則t為。
師生活動(dòng):學(xué)生思考并完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。關(guān)鍵是幫助學(xué)生實(shí)現(xiàn)從數(shù)的算術(shù)平方根到用含有字母的式子表示算術(shù)平方根的抽象。
設(shè)計(jì)意圖:為概括二次根式的概念提供具體例子,同時(shí)發(fā)展符號(hào)意識(shí)。
抽象概括,形成概念
問題3上面得到的式子有什么共同特征?
師生活動(dòng):教師引導(dǎo)學(xué)生概括得出共同特征,并給出二次根式的定義。
追問1中a的取值有要求嗎?為什么?
師生活動(dòng):教師引導(dǎo)學(xué)生討論,分析共同特點(diǎn),歸納得到二次根式的概念,并強(qiáng)調(diào)“被開方數(shù)非負(fù)”。
追問2二次根式有什么樣的特點(diǎn)?
師生活動(dòng):給學(xué)生充分的思考和討論時(shí)間,讓學(xué)生總結(jié)二次根式的特點(diǎn),教師歸納總結(jié)。
設(shè)計(jì)意圖:采用從具體到抽象的方式,通過歸納的出二次根式的概念。
辨析概念,應(yīng)用鞏固
例1下列各式是二次根式嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生從二次根式的特征出發(fā)思考問題。
例2求下列二次根式中字母的取值范圍:
師生活動(dòng):教師可以通過問題“觀察各式被開方數(shù)是什么?你能根據(jù)二次根式的概念的帶答案嗎?”引導(dǎo)學(xué)生從概念出發(fā)思考問題。
追問:求二次根式中字母的取值范圍的基本依據(jù):
師生活動(dòng):給學(xué)生充分的思考和討論時(shí)間,讓學(xué)生總結(jié)回答,教師歸納總結(jié)。
問題4 x取何值時(shí),下列二次根式有意義?
師生活動(dòng):學(xué)生搶答加分,調(diào)動(dòng)學(xué)大亨的積極性。
設(shè)計(jì)意圖:讓學(xué)生獨(dú)立思考,再追問。
問題5計(jì)算
師生活動(dòng):通過簡(jiǎn)單計(jì)算讓學(xué)生總結(jié)規(guī)律。
例3計(jì)算
師生活動(dòng):學(xué)生直接回答。
設(shè)計(jì)意圖:通過加分制調(diào)動(dòng)學(xué)生的積極性,提高學(xué)生的注意力,通過練習(xí)鞏固知識(shí)點(diǎn)。
問題7計(jì)算
師生活動(dòng):通過簡(jiǎn)單計(jì)算讓學(xué)生總結(jié)規(guī)律。
追問:
師生活動(dòng):學(xué)生討論回答,教師歸納總結(jié)。
設(shè)計(jì)意圖:通過簡(jiǎn)單計(jì)算學(xué)生自己歸納總結(jié)二次根式的性質(zhì),加深學(xué)生的印象。
綜合應(yīng)用,深化提高
練習(xí)1學(xué)生完成教科書第3頁(yè)的練習(xí)。
練習(xí)2若1<x<4,則化簡(jiǎn)
設(shè)計(jì)意圖:辨別二次根式的概念,確定二次根式有意的條件。利用二次根式的性質(zhì)解題。
小結(jié)
教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答下列問題:
什么叫二次根式?二次根式有意義的條件是什么?二次根式的值的范圍是什么?
二次根式與算術(shù)平方根有什么聯(lián)系與區(qū)別?
我們以前學(xué)過整式、分式都能像數(shù)一樣進(jìn)行運(yùn)算,你認(rèn)為對(duì)于二次根式應(yīng)該進(jìn)一步研究哪些問題?
設(shè)計(jì)意圖:共同回顧本節(jié)課學(xué)習(xí)的概念,再次練習(xí)算術(shù)平方根理解二次根式的概念,提出二次根式應(yīng)該研究的問題。
布置作業(yè)
教科書習(xí)題16.1第1、2題。
教學(xué)反思:
1、在實(shí)際授課中,通過以下步驟讓學(xué)生認(rèn)識(shí)、理解、并掌握本節(jié)知識(shí):
。1)讓學(xué)生回顧了算術(shù)平方根與平方根的概念,并且通過一個(gè)思考欄目的兩道題,得出二次根式的'定義后又復(fù)習(xí)了算術(shù)平方根具有雙重非負(fù)性;
(2)通過練習(xí)掌握如何判斷一個(gè)式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實(shí)數(shù)范圍內(nèi)有意義的條件;
。3)通過練習(xí)讓學(xué)生得出二次根式的兩個(gè)性質(zhì),體會(huì)從特殊到一般的思維過程,進(jìn)而掌握公式的一般推導(dǎo)方法;……,本節(jié)課大部分時(shí)間都是引導(dǎo)學(xué)生邊學(xué)邊做,讓學(xué)生經(jīng)歷了整個(gè)學(xué)習(xí)過程。
2.在學(xué)習(xí)過程中,突出了引導(dǎo)學(xué)生自己得出結(jié)論,特別是二次根式的兩個(gè)性質(zhì),在做完思考題之后,學(xué)生自己就初步得出了結(jié)論,而且通過其他學(xué)生的補(bǔ)充越來越完善。
3.讓學(xué)生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓(xùn)練,培養(yǎng)了學(xué)生總結(jié)規(guī)律的能力。
4.在實(shí)際教學(xué)中,仍然存在著對(duì)課堂時(shí)間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習(xí)沒時(shí)間完成,結(jié)束的也比較倉(cāng)促。在今后教學(xué)中,應(yīng)注意時(shí)間的掌控。
5.在引導(dǎo)學(xué)生探索求知和互動(dòng)學(xué)習(xí)方面還有欠缺。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,對(duì)學(xué)生探索求知進(jìn)行了引導(dǎo),并且鼓勵(lì)大家自己得出結(jié)論,但在互動(dòng)方面做的還不夠,大部分學(xué)生都是獨(dú)立思考,很少與同學(xué)合作交流,今后的教學(xué)中應(yīng)多培養(yǎng)學(xué)生合作交流的意識(shí),這樣有助于他們今后的生活和學(xué)習(xí)。
二次根式教案6
教學(xué)目標(biāo)
1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;
2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):含二次根式的式子的混合運(yùn)算.
難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.
教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)
1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,
計(jì)算結(jié)果要把分母有理化.
3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡(jiǎn)及求值等問題中,常運(yùn)用三個(gè)可逆的式子:
二、例題
例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;
(3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.
x-2且x0.
解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因?yàn)?-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個(gè)二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.
注意:
所以在化簡(jiǎn)過程中,
例6
分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計(jì)算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個(gè)基本問題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的`隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問題.
五、作業(yè)
1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡(jiǎn)二次根式:
二次根式教案7
1.教學(xué)目標(biāo)
。1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會(huì)進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算;
。2)會(huì)用公式化簡(jiǎn)二次根式。
2.目標(biāo)解析
。1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
。2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式。
教學(xué)問題診斷分析
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難。運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣。,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。
在教學(xué)時(shí),通過實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:
。1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的'根號(hào)(例見教科書例6解法2);
(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡(jiǎn)。
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn)。
教學(xué)過程設(shè)計(jì)
1、復(fù)習(xí)引入,探究新知
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除。本節(jié)課先學(xué)習(xí)二次根式的乘法。
問題1什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動(dòng)學(xué)生回答。
【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì)。
問題2教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容。
【設(shè)計(jì)意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則。要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí)。
2、觀察比較,理解法則
問題3簡(jiǎn)單的根式運(yùn)算。
師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn)。
問題4二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?
師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。
【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況。乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。
3、例題示范,學(xué)會(huì)應(yīng)用
例1化簡(jiǎn):(1)二次根式的乘除;(2)二次根式的乘除。
師生活動(dòng)提問:你是怎么理解例(1)的?
如果學(xué)生回答不完善,再追問:這個(gè)問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡(jiǎn)的效果?
師生合作回答上述問題。對(duì)于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外。
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
【設(shè)計(jì)意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向。積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。
例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除
師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn)。
(1)在被開方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;
(2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的。對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;
。3)例(3)的運(yùn)算是選學(xué)內(nèi)容。讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算。本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外。
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算。讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。
教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開方數(shù)的符號(hào)。可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問題。
4、鞏固概念,學(xué)以致用
練習(xí):教科書第7頁(yè)練習(xí)第1題。第10頁(yè)習(xí)題16.2第1題。
【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況。
5、歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問題:
。1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
。3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?
6、布置作業(yè):教科書第7頁(yè)第2、3題。習(xí)題16.2第1,6題。
五、目標(biāo)檢測(cè)設(shè)計(jì)
1、下列各式中,一定能成立的是( )
A.二次根式的乘除B.二次根式的乘除
C.二次根式的乘除D.二次根式的乘除
【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。
2、化簡(jiǎn)二次根式的乘除______________________________。
【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。
3、已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()
A.二次根式的乘除B.二次根式的乘除C.二次根式的乘除D.二次根式的乘除
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式。
二次根式教案8
課題:二次根式
教學(xué)目標(biāo)1、知識(shí)與技能
理解a(a≥0)是一個(gè)非負(fù)數(shù),(a≥0)
2、過程與方法
。1)數(shù)學(xué)思考:學(xué)會(huì)獨(dú)立思考、體會(huì)數(shù)學(xué)的體驗(yàn)歸納、類比的思想
方法
。2)問題解決:能夠利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)計(jì)算,能夠互助
交流合作,分析問題,總結(jié)反思
3、情感、態(tài)度與價(jià)值觀
體驗(yàn)成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴(yán)謹(jǐn)
求實(shí)的科學(xué)態(tài)度
教學(xué)重難點(diǎn)教學(xué)重點(diǎn):二次根式的概念
教學(xué)難點(diǎn):二次根式中根號(hào)下必須為非負(fù)數(shù)
教學(xué)過程
一、課前回顧
。2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。什么是二次根式?
二次根式中字母的取值范圍:
、俦婚_方數(shù)大于等于零;
②分母中有字母時(shí),要保證分母不為零。
、鄱鄠(gè)條件組合時(shí),應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的'實(shí)例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長(zhǎng)。
二、探究1(10分鐘)
練習(xí)1:
計(jì)算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題例1:計(jì)算:
例2:計(jì)算:
達(dá)標(biāo)測(cè)試(5分鐘)
課堂測(cè)試,檢驗(yàn)學(xué)習(xí)結(jié)果
1、判斷題
2、若,則x的取值范圍為(A)
。ˋ)x≤1(B)x≥1
。–)0≤x≤1(D)一切有理數(shù)
3、計(jì)算
4、化簡(jiǎn)
5、已知a,b,c為△ABC的三邊長(zhǎng),化簡(jiǎn):
這一類問題注意把二次根式的.運(yùn)算搭載在三角形三邊之間的關(guān)系這個(gè)知識(shí)點(diǎn)上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細(xì)研究如圖,P是直角坐標(biāo)系中一點(diǎn)。
。1)用二次根式表示點(diǎn)P到原點(diǎn)O的距離;
。2)如果求點(diǎn)P到原點(diǎn)O的距離
體驗(yàn)收獲今天我們學(xué)習(xí)了哪些知識(shí)
二次根式的兩條性質(zhì)。
布置作業(yè)教材8頁(yè)習(xí)題第3、4題。
二次根式教案9
一、教學(xué)目標(biāo)
1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。
2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。
3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問題中的應(yīng)用。
二、教學(xué)重點(diǎn)和難點(diǎn)
1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。
2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。
三、教學(xué)方法
通過實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。
四、教學(xué)手段
利用投影儀。
五、教學(xué)過程
(一)引入新課
提出問題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?
了。這樣會(huì)給解決實(shí)際問題帶來方便。
。ǘ┬抡n
由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問題創(chuàng)
這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開方數(shù)的'因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。
總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:
1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。
2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。
例1 指出下列根式中的最簡(jiǎn)二次根式,并說明為什么。
分析:
說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。
例2 把下列各式化成最簡(jiǎn)二次根式:
說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡(jiǎn)。
例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:
說明:
1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。
2。要提問學(xué)生
問題,通過這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。
通過例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。
注意:
、倩(jiǎn)時(shí),一般需要把被開方數(shù)分解因數(shù)或分解因式。
、诋(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。
。ㄈ┬〗Y(jié)
1。滿足什么條件的根式是最簡(jiǎn)二次根式。
2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。
。ㄋ模┚毩(xí)
1。指出下列各式中的最簡(jiǎn)二次根式:
2。把下列各式化成最簡(jiǎn)二次根式:
六、作業(yè)
教材P。187習(xí)題11。4;A組1;B組1。
七、板書設(shè)計(jì)
二次根式教案10
【教學(xué)目標(biāo)】
1.運(yùn)用法則
進(jìn)行二次根式的乘除運(yùn)算;
2.會(huì)用公式
化簡(jiǎn)二次根式。
【教學(xué)重點(diǎn)】
運(yùn)用
進(jìn)行化簡(jiǎn)或計(jì)算
【教學(xué)難點(diǎn)】
經(jīng)歷二次根式的乘除法則的探究過程
【教學(xué)過程】
一、情境創(chuàng)設(shè):
1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的'哪些性質(zhì)?
2.計(jì)算:
二、探索活動(dòng):
1.學(xué)生計(jì)算;
2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號(hào)不變。
將上面的'公式逆向運(yùn)用可得:
積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。
三、例題講解:
1.計(jì)算:
2.化簡(jiǎn):
小結(jié):如何化簡(jiǎn)二次根式?
1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。
四、課堂練習(xí):
(一).P62練習(xí)1、2
注意:
不是積的形式,要因數(shù)分解為36×16=242.
補(bǔ)充練習(xí):
1.(x>0,y>0)
2.拓展與提高:
化簡(jiǎn):1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
☆3.已知:,求的值。
五、本課小結(jié)與作業(yè):
小結(jié):二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補(bǔ)充習(xí)題
二次根式教案11
第十六章 二次根式
代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長(zhǎng):5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.
解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來,將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時(shí),通過“提問——追問——討論”的形式展開,保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁(yè))
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁(yè))
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的'鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡(jiǎn)問題要特別注意符號(hào)問題.
化簡(jiǎn):.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時(shí),=|x-3|=x-3;
當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.
[解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.
5
O
M
二次根式教案12
教學(xué)內(nèi)容
二次根式的加減
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.
過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來指導(dǎo)根式的計(jì)算和化簡(jiǎn).
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
重難點(diǎn)關(guān)鍵
1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.
2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.
教法:
1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項(xiàng)進(jìn)行類比,獲得解決問題的`方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
知識(shí)點(diǎn)
自主檢測(cè)、同伴互查
1、師生共同解決“學(xué)法”問題與13頁(yè)“練習(xí)1”;
2、學(xué)生演板13頁(yè)“練習(xí)2、3”。
四、知識(shí)梳理、師生共議
1、談收獲:
(1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?
(2)怎樣合并被開方數(shù)相同的二次根式呢?
(3)二次根式進(jìn)行加減運(yùn)算時(shí)應(yīng)注意什么問題?
2、說不足:。
五、作業(yè)訓(xùn)練、鞏固提高
1、必做題:課本15頁(yè)的“習(xí)題2、3”;
課時(shí)練習(xí)
1.揭示學(xué)法、自主學(xué)習(xí)
認(rèn)真閱讀課本14頁(yè)內(nèi)容,完成下列任務(wù):
1、完成14頁(yè)“例3、4”,先做再對(duì)照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問題?
(時(shí)間7分鐘若有困難,與同伴討論)
三、自主檢測(cè)、同伴互查
1、師生共同解決“學(xué)法”問題;
2、學(xué)生演板14頁(yè)“練習(xí)1、2”。
四、知識(shí)梳理、師生共議
1、談收獲:
(1)二次根式進(jìn)行混合運(yùn)算時(shí)運(yùn)用了哪些知識(shí)?
(2)二次根式進(jìn)行混合運(yùn)算時(shí)應(yīng)注意哪些問題?
二次根式教案13
1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:
(≥0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.
類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,
請(qǐng)學(xué)生們思考為什么b的'取值范圍變小了?
與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.
對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.
對(duì)學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過程設(shè)計(jì)
問題與情境師生行為設(shè)計(jì)意圖
活動(dòng)二自我檢測(cè)
活動(dòng)三挑戰(zhàn)逆向思維
把反過來,就得到
。ā0,b0)
利用它就可以進(jìn)行二次根式的化簡(jiǎn).
例2化簡(jiǎn):
(1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡(jiǎn):
(1)(2)活動(dòng)四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過程,教師將過程寫在黑板上.
請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.
請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.
此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時(shí)有一個(gè)參照.
充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問題解決.
二次根式教案14
一、教學(xué)目標(biāo)
1.了解二次根式的意義;
2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問題;
3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;
4.通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5. 通過二次根式性質(zhì) 和 的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美.
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的`取值范圍.
難點(diǎn):確定二次根式中字母的取值范圍.
三、教學(xué)方法
啟發(fā)式、講練結(jié)合.
四、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫平方根、算術(shù)平方根?
2.說出下列各式的意義,并計(jì)算:
通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.
觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,
表示的是算術(shù)平方根.
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義: 式子 叫做二次根式.
對(duì)于 請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.
例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0
例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?
解:略.
說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.
例3 當(dāng)字母取何值時(shí),下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.
(2)-3x0,x0,即x0時(shí), 是二次根式.
(3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.
(4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
(1) ; (2) ; (3) ; (4)
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).
(4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.
(三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))
1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.
2.式子中,被開方數(shù)(式)必須大于等于零.
(四)練習(xí)和作業(yè)
練習(xí):
1.判斷下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無意義.
2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
五、作業(yè)
教材P.172習(xí)題11.1;A組1;B組1.
六、板書設(shè)計(jì)
二次根式教案15
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生了解最簡(jiǎn)二次根式的概念和同類二次根式的概念.
2.能判斷二次根式中的同類二次根式.
3.會(huì)用同類二次根式進(jìn)行二次根式的加減.
(二)能力訓(xùn)練點(diǎn)
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.
(三)德育滲透點(diǎn)
從簡(jiǎn)單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會(huì)轉(zhuǎn)化的思維,滲透辯證唯物主義思想.
(四)美育滲透點(diǎn)
通過二次根式的加減,滲透二次根式化簡(jiǎn)合并后的形式簡(jiǎn)單美.
二、學(xué)法引導(dǎo)
1.教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯(cuò)誤,從而樹立牢固的計(jì)算方法.
2.學(xué)生學(xué)法通過不斷的練習(xí),從中體會(huì)、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則.
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn)二次根式的加減法運(yùn)算.
2.教學(xué)難點(diǎn)二次根式的化簡(jiǎn).
3.疑點(diǎn)及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡(jiǎn),在適當(dāng)復(fù)習(xí)二次根的化簡(jiǎn)后進(jìn)行一步引入幾個(gè)整式加減法的,以引起學(xué)生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進(jìn)行階梯式教學(xué),由淺到深、由簡(jiǎn)單到復(fù)雜的.教學(xué)方法,以利于學(xué)生的理解、掌握和運(yùn)用,通過具體例題的計(jì)算,可由教師引導(dǎo),由學(xué)生總結(jié)出計(jì)算的步驟和注意的問題,還可以通過反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對(duì)概念的理解、法則的運(yùn)用更加準(zhǔn)確和熟練,并能提高學(xué)生的學(xué)習(xí)興趣,以達(dá)到更好的學(xué)習(xí)效果.
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影片
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
1.復(fù)習(xí)最簡(jiǎn)二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問題.
2.教師通過例題的示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的二次根式的定義.
3.再通過較復(fù)雜的二次根式的加減法計(jì)算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的法則.
4.通過學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問題及時(shí)糾正,并引導(dǎo)學(xué)生從解題過程中體會(huì)理解二次根式加減法的實(shí)質(zhì)及解決的方法.
七、教學(xué)步驟
(一)明確目標(biāo)
學(xué)習(xí)二次根式化簡(jiǎn)的目的是為了能將一些最終能化為同類二次根式項(xiàng)相合并,從而達(dá)到化繁為簡(jiǎn)的目的,本節(jié)課就是研究二次根式的加減法.
(二)整體感知
同類二次根式的概念應(yīng)分二層含義去理解(1)化簡(jiǎn)后(2)被開方數(shù)還相同.通過正確理解二次根式加減法的法則來準(zhǔn)確地實(shí)施二次根式加減法的運(yùn)算,應(yīng)特別注意合并同類二次根式時(shí)僅將它們的系數(shù)相加減,根式一定要保持不變,并可對(duì)比整式的加減法則以增加對(duì)合并同類二次根式的理解,增強(qiáng)綜合運(yùn)算的能力.
【二次根式教案】相關(guān)文章:
二次根式教案四篇03-02
精選二次根式教案3篇08-08
【精選】二次根式教案三篇08-05
精選二次根式教案4篇08-16
實(shí)用的二次根式教案三篇04-11
二次根式教案合集7篇04-10
二次根式教案匯總九篇04-07
二次根式教案范文10篇04-05
二次根式教案匯編六篇04-04