- 函數(shù)概念教案 推薦度:
- 《函數(shù)的概念》教案 推薦度:
- 相關(guān)推薦
函數(shù)概念教案(通用15篇)
作為一位不辭辛勞的人民教師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么你有了解過(guò)教案嗎?下面是小編精心整理的函數(shù)概念教案,僅供參考,歡迎大家閱讀。
函數(shù)概念教案1
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)領(lǐng)域中最為重要的概念之一,在中學(xué)數(shù)學(xué)中貫穿始終。概念作為數(shù)學(xué)的基礎(chǔ),函數(shù)理論的顯著特點(diǎn)之一就是強(qiáng)調(diào)概念性。只有對(duì)函數(shù)概念有深刻的理解,才能正確靈活地應(yīng)用它。在本課程中,對(duì)函數(shù)概念的理解程度將直接影響其他知識(shí)的學(xué)習(xí)。因此,第一課時(shí)對(duì)于函數(shù)的學(xué)習(xí)非常重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1)教學(xué)知識(shí)目標(biāo):掌握對(duì)應(yīng)和映射的概念,理解函數(shù)的定義和三要素,以及對(duì)函數(shù)符號(hào)的抽象理解。
(2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3)德育滲透目標(biāo):培養(yǎng)學(xué)生具備辯證唯物主義觀點(diǎn),認(rèn)識(shí)到一切事物都在不斷變化、相互聯(lián)系和相互制約的理念。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最核心的概念之一,其在中學(xué)數(shù)學(xué)教育中起著重要的作用。函數(shù)概念貫穿于數(shù)、式、方程、函數(shù)、排列組合和數(shù)列極限等內(nèi)容,這些代數(shù)知識(shí)都以函數(shù)為中心。加強(qiáng)對(duì)函數(shù)的教學(xué)有助于學(xué)生更好地理解和掌握其他數(shù)學(xué)內(nèi)容。因此,對(duì)函數(shù)概念的深入理解是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射和函數(shù)是數(shù)學(xué)中非常重要的概念,它們的定義比較抽象,對(duì)于初入高中不久的學(xué)生來(lái)說(shuō)可能不容易理解。另外,函數(shù)作為高考考點(diǎn)的一個(gè)重要內(nèi)容,涵蓋了低、中、高難度題型,因此近年來(lái)出現(xiàn)了對(duì)函數(shù)的熱門關(guān)注。因此,本節(jié)課的重點(diǎn)和難點(diǎn)主要在于理解和應(yīng)用映射的概念、函數(shù)的近代定義以及函數(shù)符號(hào)的運(yùn)用。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:在教授函數(shù)概念和符號(hào)運(yùn)用時(shí),更重要的是向?qū)W生清晰地解釋這些概念及相關(guān)注意事項(xiàng),并通過(guò)師生共同討論的方式幫助學(xué)生深入理解。只有這樣,函數(shù)概念和符號(hào)運(yùn)用才能真正在學(xué)生的思維和知識(shí)結(jié)構(gòu)中留下深刻的印象,為接下來(lái)的學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:將高一(12)班和高一(11)全體同學(xué)視為兩個(gè)集合,考慮通過(guò)“找好朋友”這一對(duì)應(yīng)規(guī)則,是否存在某些元素在兩個(gè)集合之間建立聯(lián)系。請(qǐng)?zhí)峁┠枰卮鸬膯?wèn)題的具體要求,以便我能夠更好地幫助您修改內(nèi)容。
二、新課講授:
(1)接下來(lái),通過(guò)幻燈片向?qū)W生展示六組他們熟悉的數(shù)集的對(duì)應(yīng)關(guān)系,并引導(dǎo)他們歸納出這些數(shù)集共同的性質(zhì)(一對(duì)一,多對(duì)一)。然后,我們引入映射的概念,通過(guò)符號(hào)f:a→b來(lái)表示,同時(shí)解釋原像和像的定義。在強(qiáng)調(diào)非空集合a到非空集合b的映射由三部分組成:非空集合a、非空集合b以及從a到b的對(duì)應(yīng)法則f。此外,我們進(jìn)一步指出判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f是否能夠在b中找到確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁(yè)第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有的`元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
函數(shù)和映射是數(shù)學(xué)中的兩個(gè)概念,它們之間有一些區(qū)別和聯(lián)系。在接下來(lái)的內(nèi)容中,我將通過(guò)比較函數(shù)的近代定義與映射的定義,來(lái)幫助大家更好地理解它們的區(qū)別和聯(lián)系。函數(shù)是現(xiàn)代數(shù)學(xué)中的一個(gè)概念,它可以被定義為將一個(gè)非空數(shù)集的每個(gè)元素都映射到另一個(gè)非空數(shù)集的規(guī)則。簡(jiǎn)單來(lái)說(shuō),函數(shù)就是一種對(duì)應(yīng)關(guān)系,它把輸入的元素映射到輸出的元素上。函數(shù)的定義可以用符號(hào)表示為:f: X → Y,其中X和Y分別是非空數(shù)集,f表示函數(shù)名,X稱為函數(shù)的定義域,Y稱為函數(shù)的值域。函數(shù)的定義要求每個(gè)輸入元素都要有唯一的輸出元素與之對(duì)應(yīng)。映射是數(shù)學(xué)中常見(jiàn)的概念,它也可以被理解為一種對(duì)應(yīng)關(guān)系。映射和函數(shù)之間的區(qū)別在于映射的定義更加寬泛,它可以是將一個(gè)集合的每個(gè)元素映射到另一個(gè)集合的規(guī)則,而不局限于數(shù)集。映射的定義可以用符號(hào)表示為:f: A → B,其中A和B可以是任意集合,f表示映射的名字,A稱為映射的起始集合,B稱為映射的終止集合。映射的定義要求每個(gè)起始集合中的元素都要有與之對(duì)應(yīng)的終止集合中的元素,但并不要求唯一性。綜上所述,函數(shù)是一種特殊類型的映射,它限定了輸入和輸出的數(shù)集的特定條件:非空數(shù)集。函數(shù)的定義更加嚴(yán)格,要求每個(gè)輸入元素都要有唯一的輸出元素與之對(duì)應(yīng)。而映射的定義則更加寬泛,可以是將任意集合中的元素映射到另一個(gè)任意集合中的規(guī)則。我們可以把函數(shù)看作是映射的一種特例,即限定了輸入和輸出集合的類型為非空數(shù)集。希望通過(guò)以上的解釋,大家對(duì)函數(shù)和映射的區(qū)別和聯(lián)系有更清晰的認(rèn)識(shí)。
函數(shù)是一種將非空數(shù)集映射到非空數(shù)集的方式。以下是關(guān)于函數(shù)近代定義的一些注意事項(xiàng):1. 函數(shù)的定義域和值域必須是非空數(shù)集,即定義了輸入和輸出的范圍。2. 一個(gè)定義良好的函數(shù),在定義域內(nèi)的每個(gè)元素都有唯一對(duì)應(yīng)的值域元素。3. 函數(shù)可以用多種形式來(lái)表示,如公式、圖表、算法等。4. 函數(shù)的圖像是在坐標(biāo)系中畫(huà)出的曲線或線段,表示定義域內(nèi)的所有點(diǎn)對(duì)應(yīng)的值域元素。5. 函數(shù)可以通過(guò)求導(dǎo)、積分等運(yùn)算進(jìn)行分析和變換。6. 函數(shù)可以具有不同的性質(zhì),如奇偶性、單調(diào)性、周期性等,這些性質(zhì)對(duì)函數(shù)的圖像和行為有重要影響。7. 函數(shù)可以進(jìn)行組合運(yùn)算,即將一個(gè)函數(shù)的輸出作為另一個(gè)函數(shù)的輸入,得到新的函數(shù)。8. 函數(shù)可以用來(lái)描述和模擬現(xiàn)實(shí)世界中的各種現(xiàn)象和關(guān)系,如物理學(xué)中的運(yùn)動(dòng)、經(jīng)濟(jì)學(xué)中的供求關(guān)系等。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的性。
6. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三、講解例題
例1.問(wèn)y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0+1
畫(huà)圖可以通過(guò)觀察x和y之間的對(duì)應(yīng)關(guān)系,得出從x的取值范圍到y(tǒng)的取值范圍是“多對(duì)一”關(guān)系,因此可以判斷這是一個(gè)函數(shù)。該函數(shù)將非空數(shù)集映射到非空數(shù)集。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四、課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書(shū)設(shè)計(jì)
書(shū)本p51 習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)概念教案2
教學(xué)目標(biāo):
1.通過(guò)現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的`定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
3.通過(guò)教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
兩集合間用對(duì)應(yīng)來(lái)描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為 ,面積為 .
2.問(wèn)題.
在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來(lái)描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見(jiàn)的函數(shù)模型有哪些?
二、學(xué)生活動(dòng)
1.復(fù)述初中所學(xué)函數(shù)的概念;
2.閱讀課本23頁(yè)的問(wèn)題(1)、(2)、(3),并分別說(shuō)出對(duì)其理解;
3.舉出生活中的實(shí)例,進(jìn)一步說(shuō)明函數(shù)的對(duì)應(yīng)本質(zhì).
三、數(shù)學(xué)建構(gòu)
1.用集合的語(yǔ)言分別闡述23頁(yè)的問(wèn)題(1)、(2)、(3);
問(wèn)題1 某城市在某一天24小時(shí)內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問(wèn)題:
。1)這一變化過(guò)程中,有哪幾個(gè)變量?
。2)這幾個(gè)變量的范圍分別是多少?
問(wèn)題2 略.
問(wèn)題3 略(詳見(jiàn)23頁(yè)).
2.函數(shù):一般地,設(shè)A、B是兩個(gè)非空的數(shù)集,如果按某種對(duì)應(yīng)法則f,對(duì)于集合A中的每一個(gè)元素x,在集合B中都有惟一的元素和它對(duì)應(yīng),這樣的對(duì)應(yīng)叫做從A到B的一個(gè)函數(shù),通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)=f(x)的定義域.
。1)函數(shù)作為一種數(shù)學(xué)模型,主要用于刻畫(huà)兩個(gè)變量之間的關(guān)系;
。2)函數(shù)的本質(zhì)是一種對(duì)應(yīng);
。3)對(duì)應(yīng)法則f可以是一個(gè)數(shù)學(xué)表達(dá)式,也可是一個(gè)圖形或是一個(gè)表格
。4)對(duì)應(yīng)是建立在A、B兩個(gè)非空的數(shù)集之間.可以是有限集,當(dāng)然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)=f(x)的定義域:
。1)每一個(gè)函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
(2)給定函數(shù)時(shí)要指明函數(shù)的定義域,對(duì)于用解析式表示的集合,如果沒(méi)
有指明定義域,那么就認(rèn)為定義域?yàn)橐磺袑?shí)數(shù).
四、數(shù)學(xué)運(yùn)用
例1.判斷下列對(duì)應(yīng)是否為集合A 到 B的函數(shù):
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
。2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
。3)A={1,2,3,4,5},B=N,f:x→2x.
練習(xí):判斷下列對(duì)應(yīng)是否為函數(shù):
(1)x→2x,x≠0,x∈R;
(2)x→,這里2=x,x∈N,∈R。
例2 求下列函數(shù)的定義域:
。1)f(x)=x—1;(2)g(x)=x+1+1x。
例3 下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
A.=x與=(x)2; B.=x2與=3x3;
C.=2x-1(x∈R)與=2t-1(t∈R); D.=x+2x-2與=x2-4
練習(xí):課本26頁(yè)練習(xí)1~4,6.
五、回顧小結(jié)
1.生活中兩個(gè)相關(guān)變量的刻畫(huà)→函數(shù)→對(duì)應(yīng)(A→B)
2.函數(shù)的對(duì)應(yīng)本質(zhì);
3.函數(shù)的對(duì)應(yīng)法則和定義域.
六、作業(yè):
課堂作業(yè):課本31頁(yè)習(xí)題2。1(1)第1,2兩題.
函數(shù)概念教案3
【高考要求】:三角函數(shù)的有關(guān)概念(B).
【教學(xué)目標(biāo)】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
【教學(xué)重難點(diǎn)】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
【知識(shí)復(fù)習(xí)與自學(xué)質(zhì)疑】
一、問(wèn)題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長(zhǎng)公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?
6、你能在單位圓中畫(huà)出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí).
1.給出下列命題:
(1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負(fù)半軸上。其中正確的命題的序號(hào)是
2.設(shè)P 點(diǎn)是角終邊上一點(diǎn),且滿足 則 的值是
3.一個(gè)扇形弧AOB 的.面積是1 ,它的周長(zhǎng)為4 ,則該扇形的中心角= 弦AB長(zhǎng)=
4.若 則角 的終邊在 象限。
5.在直角坐標(biāo)系中,若角 與角 的終邊互為反向延長(zhǎng)線,則角 與角 之間的關(guān)系是
6.若 是第三象限的角,則- , 的終邊落在何處?
【交流展示、互動(dòng)探究與精講點(diǎn)撥】
例1.如圖, 分別是角 的終邊.
。1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.(1)已知角的終邊在直線 上,求 的值;
(2)已知角的終邊上有一點(diǎn)A ,求 的值。
例3.若 ,則 在第 象限.
例4.若一扇形的周長(zhǎng)為20 ,則當(dāng)扇形的圓心角 等于多少弧度時(shí),這個(gè)扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角 的終邊上一點(diǎn)的坐標(biāo)為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個(gè)半徑為 的扇形,如果它的周長(zhǎng)等于弧所在半圓的弧長(zhǎng),那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點(diǎn)P 在第三象限,則 角終邊在第 象限.
5、設(shè)角 的終邊過(guò)點(diǎn)P ,則 的值為 .
6、已知角 的終邊上一點(diǎn)P 且 ,求 和 的值.
【遷移應(yīng)用】
1、經(jīng)過(guò)3小時(shí)35分鐘,分針轉(zhuǎn)過(guò)的角的弧度是 .時(shí)針轉(zhuǎn)過(guò)的角的弧度數(shù)是 .
2、若點(diǎn)P 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點(diǎn)P從(1,0)出發(fā),沿單位圓 逆時(shí)針?lè)较蜻\(yùn)動(dòng) 弧長(zhǎng)到達(dá)Q點(diǎn),則Q點(diǎn)坐標(biāo)為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角 的值.
函數(shù)概念教案4
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過(guò)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
教學(xué)難點(diǎn):概念的抽象性.
教學(xué)過(guò)程:
。ㄒ唬┮胄抡n:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的.
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n
y是,n是自變量
2、 ,n是,a是自變量.
。ǘ┲v授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的'取值范圍.
。1) (2)
(3) (4)
。5) (6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.
。3)小題的 是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開(kāi)方數(shù)大于、等于零. 的被開(kāi)方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開(kāi)方數(shù),
.
解:(1)全體實(shí)數(shù)
。2)全體實(shí)數(shù)
。3)
。4) 且
(5)
。6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)大于、等于零.
注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問(wèn)題也與次類似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫(xiě)成 或 .在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里 與 是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
函數(shù)概念教案5
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁(yè)第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的'任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問(wèn)y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書(shū)設(shè)計(jì)
書(shū)本p51 習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
函數(shù)概念教案6
各位領(lǐng)導(dǎo)老師大家好,今天我說(shuō)課的內(nèi)容是函數(shù)的近代定義也就是函數(shù)的第一課時(shí)內(nèi)容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對(duì)函數(shù)概念理解的程度會(huì)直接影響數(shù)學(xué)其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
。1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
。2)能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。
(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的學(xué)生來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)高考有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的'定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二、 新課講授:
。1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:A→B,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對(duì)應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在B中是否有唯一確定的元素與之對(duì)應(yīng)。
。2)鞏固練習(xí)課本52頁(yè)第八題。
此練習(xí)能讓學(xué)生更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1。給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對(duì)應(yīng)法則f),并說(shuō)明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):
2。函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3。f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4。f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。
5。集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6!癴:A→B”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三、講解例題
例1。問(wèn)y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0*X+1
畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四、課時(shí)小結(jié):
1。映射的定義。
2。函數(shù)的近代定義。
3。函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4。函數(shù)近代定義的五大注意點(diǎn)。
五、課后作業(yè)及板書(shū)設(shè)計(jì)
書(shū)本P51 習(xí)題2。1的1、2寫(xiě)在書(shū)上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:2。函數(shù)近代定義:例題練習(xí)
二、函數(shù)的定義[注]1—5
1。函數(shù)傳統(tǒng)定義三、作業(yè):
函數(shù)概念教案7
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過(guò)程:
、.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:
問(wèn)題一:y=1(xR)是函數(shù)嗎?
問(wèn)題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問(wèn)題,因此,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)概念(板書(shū)課題).
、.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書(shū))
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語(yǔ)言敘述后,我們就很容易回答前面所提出的兩個(gè)問(wèn)題.
y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的'值1與它對(duì)應(yīng),所以說(shuō)y是x的函數(shù).
Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問(wèn)題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
②符號(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
、奂螦中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
、輋(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來(lái)表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-20,即x2時(shí),1x-2 有意義
這個(gè)函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時(shí)3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問(wèn)題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為x m,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問(wèn)題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來(lái)表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來(lái)看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說(shuō)是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過(guò)要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬(wàn)萬(wàn)不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫(xiě)的).
[師]大家說(shuō),判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語(yǔ):是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無(wú)人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問(wèn)題都要多問(wèn)幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎](méi)想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫(huà)出y=x2+4x+3(-31)的圖象,如圖所示,
當(dāng)x[-3,1]時(shí),得y[-1,8]
、.課堂練習(xí)
課本P24練習(xí)17.
Ⅴ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問(wèn)題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來(lái)歸納)
、.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來(lái)
函數(shù)概念教案8
自讀要求:
1、理解“記憶所蘊(yùn)涵著的真諦”及“門檻”的象征意義。
2、體會(huì)兩篇散文詩(shī)中所飽含的作者的思想感情,品味雋永的富有哲理的語(yǔ)言。
3、學(xué)習(xí)比喻、象征等手法的運(yùn)用,認(rèn)知散文詩(shī)的基本特點(diǎn),初步學(xué)會(huì)對(duì)散文詩(shī)的欣賞。
學(xué)習(xí)重點(diǎn):
從品味語(yǔ)言入手,通過(guò)兩首散文詩(shī)的對(duì)比閱讀,歸納散文詩(shī)的基本特點(diǎn),進(jìn)而欣賞兩首散文詩(shī)的語(yǔ)言美、形式美、意境美。
◆ 自讀程序
記憶
一、導(dǎo)語(yǔ)設(shè)計(jì)
前蘇聯(lián)作家高爾基的《海燕》運(yùn)用象征的手法,使人們?cè)邙B(niǎo)兒(海燕、海鷗、海鴨、企鵝……)“嘰嘰喳喳”的叫喊聲中聽(tīng)出了革命先驅(qū)對(duì)暴風(fēng)雨的渴望,看到了革命勇士搏擊長(zhǎng)空的雄姿,文章具有散文的形式美,更具有詩(shī)歌的意境美。這種詩(shī)歌散文化、散文詩(shī)歌化的文學(xué)體裁,人們稱之為散文詩(shī)。今天我們?cè)匍喿x兩篇散文詩(shī),了解體會(huì)這種文體。
二、整體感知——理解,感受結(jié)構(gòu)美
首先明確本文是一篇散文詩(shī),它具有詩(shī)一樣優(yōu)美的語(yǔ)言,優(yōu)美的意境;同時(shí)又兼具散文的形散神聚的特點(diǎn)。
1,學(xué)生快速默讀《記憶》,根據(jù)文章的內(nèi)容,將其劃分一下層次,理出作者的寫(xiě)作思路。
明確:
第一部分:1—7自然段,引出記憶的話題。以文學(xué)家的筆墨來(lái)表現(xiàn)記憶的社會(huì)本質(zhì)。
第二部分:8—14自然段,談到記憶,既涉及話題,又脫離話題。描述有關(guān)記憶的種種現(xiàn)象,進(jìn)一步探討記憶的社會(huì)本質(zhì)。
第三部分:15—24自然段,用比喻性的說(shuō)法正面回答什么是記憶。
第四部分:25—31自然段,描寫(xiě)各種人對(duì)待記憶的態(tài)度,或者說(shuō)記憶在各種人身上的表現(xiàn)。
綜合以上,本文圍繞“記憶”展開(kāi)話題,但卻始終沒(méi)有明確點(diǎn)出記憶到底是什么,?梢(jiàn)記憶不過(guò)是作者思想感情賴以表達(dá)的憑借,作者真正想表達(dá)的是對(duì)正義、對(duì)高尚情操的歌頌,對(duì)惡勢(shì)力、對(duì)卑下行為的批判,但這寫(xiě)作意圖藏而不露。
2,論“記憶所蘊(yùn)涵著的真諦”。學(xué)生自由發(fā)言,回答文中“記憶”究竟指什么?進(jìn)而初步了解作者所表達(dá)的觀點(diǎn)態(tài)度。
明確:本文從記憶這一角度入手,對(duì)紛繁的社會(huì)現(xiàn)象和人們的種種品行作了概括而生動(dòng)的描寫(xiě),表達(dá)了對(duì)真善美的歌頌,對(duì)假惡丑的批判。從根本上說(shuō),這里的“記憶”,是廣大人民心中判斷是非曲直的客觀尺度。
三、揣摩剖析——悟讀,領(lǐng)悟意境美
1,理解“記憶嘛,沒(méi)有重量……又可以使另一個(gè)人的靈魂貶值到零以下”這段話的含義。
明確:
“沒(méi)有重量”——過(guò)去犯了錯(cuò)誤,而又沒(méi)有正確對(duì)待,那么犯錯(cuò)誤的記憶就可以壓得你匍匐在地;由于你刻苦學(xué)習(xí)從而取得了學(xué)習(xí)或工作的進(jìn)步,學(xué)或工作進(jìn)步的記憶就可以鼓舞你在理想的空間里飛翔。
“沒(méi)有體積”——襟懷坦蕩,光明磊落的做事的記憶,可以讓人去擁抱整個(gè)世界;反之以小心眼處事,那么你的世界會(huì)很狹小。
“沒(méi)有色彩”——做過(guò)的有損于社會(huì)的事情的記憶,就可以使人的心靈變得蒼白幽暗;而對(duì)人民,對(duì)社會(huì)做出貢獻(xiàn)的記憶,可以使人的內(nèi)心世界絢麗輝煌。
“沒(méi)有標(biāo)價(jià)”——對(duì)人民對(duì)社會(huì)做出巨大貢獻(xiàn)的的記憶,可以讓一個(gè)人生命價(jià)值上升到崇高境界,而做出嚴(yán)重危害社會(huì)危害人民的記憶,則可以是一個(gè)人的靈魂貶值到零以下。
1,輕聲閱讀“記憶沒(méi)有體積……”這部分,討論記憶對(duì)人有哪些影響。學(xué)生自由發(fā)言,回答作者從人生的哪些方面對(duì)人類品性作了剖析?你還能列舉出哪些方面?
2,默讀兩個(gè)傳說(shuō),輕讀“嗯,只記得一己憂患的,是庸人!攀怯率,真正的勇士!”討論:兩個(gè)傳說(shuō)表達(dá)了作者的什么觀點(diǎn)?后面的議論表達(dá)了作者什么樣的愛(ài)憎情感?
3,綜合以上兩大段,討論:你體會(huì)到了作者什么樣的心靈境界?
四、鑒別賞析——品讀,欣賞形式美
1,聲情并茂閱讀“……而你,朋友,卻執(zhí)拗地望著我……他就永不會(huì)從后人的記憶中泯滅”。討論:這一段語(yǔ)言有何特色?運(yùn)用了哪些表達(dá)方式?通過(guò)哪些表現(xiàn)手法表達(dá)情感?
2,由此段推及全文,討論語(yǔ)言、結(jié)構(gòu)形式、體裁有何特色,從而掌握散文詩(shī)的一般特點(diǎn)。
五、遷移運(yùn)用——練讀,體驗(yàn)鑒賞美
1,自讀《門檻》,揣摩“門檻”的象征意
2,討論文中“俄羅斯的`姑娘”具有怎樣的性格特征。
3,比較《記憶》與《門檻》在語(yǔ)言、取材、表現(xiàn)手法、意境上的異同。
◆自讀點(diǎn)撥
1、多方面的美感在《記憶》中的體現(xiàn)。
、偾椴倜溃阂(jiàn)“自讀程序”三。
、诮Y(jié)構(gòu)美:全文采用了層進(jìn)式與錯(cuò)綜分承式相結(jié)合的開(kāi)放性創(chuàng)新結(jié)構(gòu)。對(duì)“人生價(jià)值”這一永恒的話題,以一老者向年輕人談話的形式,娓娓而談,步步推進(jìn),賦予了有形的篇章以無(wú)限的聯(lián)想空間。
、壅路溃撼晒Φ剡\(yùn)用了美學(xué)中“和諧”與“奇異”的原理,采用的是參照系方法。在關(guān)于“記憶真諦”方面,采用虛實(shí)參照,表現(xiàn)出奇異。
、苷Z(yǔ)言美:化虛為實(shí),變抽象說(shuō)理為形象思考,極具感染力,不僅具有視覺(jué)美和聽(tīng)覺(jué)美,更具有靈覺(jué)美(使讀者心靈受到感動(dòng))。形式上既有詩(shī)歌視覺(jué)整齊,聽(tīng)覺(jué)爽朗,富有氣勢(shì)的特點(diǎn),又有散文“形散神聚”、意象廣博、文化價(jià)值內(nèi)涵豐富的特征,形象、生動(dòng)、精練、深邃、雋永,富有哲理。
、菀饩趁溃何闹谢摓閷(shí),又因?qū)嵨蛱,以“記憶”作為審視“人生真諦”的載體,進(jìn)行多層面、多視角的價(jià)值評(píng)判,從而構(gòu)成了開(kāi)闊的、積極向上的多視角意象和多層面意境。
2、強(qiáng)烈感情在《記憶》中的表現(xiàn)。
對(duì)記憶真諦揭示的全過(guò)程,鮮明地表現(xiàn)了作者的愛(ài)憎。首先是對(duì)“記憶”的價(jià)值評(píng)判中,四句名言,作者從忘卻(記憶的反面)的角度表達(dá)了對(duì)忘恩負(fù)義和背叛的堅(jiān)決否定。接著,在描述“記憶”時(shí),以“重量”“體積”“色彩”“標(biāo)價(jià)”為突破口,對(duì)理想遠(yuǎn)大、胸懷?寬闊、心靈絢麗、價(jià)值崇高的人生予以了充分的肯定;同時(shí)對(duì)胸?zé)o大志、心胸狹隘、心靈幽暗、價(jià)值低下的人生給予了徹底的批判。隨后的設(shè)喻更是對(duì)勇于奉獻(xiàn)精神的高度贊美。兩個(gè)傳說(shuō)對(duì)流芳千古與遺臭萬(wàn)年的人生態(tài)度十分鮮明,加上反面的議論,使作者對(duì)庸人、叛徒、蠢貨、懦夫的憤慨,和對(duì)智者、勇士的頌揚(yáng)得到充分的體現(xiàn),作者的感情也達(dá)到了高潮。
3、《記憶》與《門檻》在語(yǔ)言、取材、表現(xiàn)手法、情感、意境上有許多異同點(diǎn) 。
◆自讀訓(xùn)練
課外閱讀一篇散文詩(shī),說(shuō)說(shuō)散文詩(shī)這種文體的一些特征。
函數(shù)概念教案9
教材分析:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
教學(xué)重點(diǎn):
理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
教學(xué)難點(diǎn):
符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過(guò)程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的`數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;
。3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題
備用實(shí)例:
我國(guó)2003年4月份非典疫情統(tǒng)計(jì):
日期
22
23
24
25
26
27
28
29
30
新增確診病例數(shù)
106
105
89
103
113
126
98
152
101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
(一)函數(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range).
注意:
1 “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;
。2)無(wú)窮區(qū)間;
。3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
(由學(xué)生完成,師生共同分析講評(píng))
(二)典型例題
1.求函數(shù)定義域
課本P20例1
解:(略)
說(shuō)明:
1函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
3函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說(shuō)明:
1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。
鞏固練習(xí):
1課本P22第2題
2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說(shuō)明理由?
。1)f ( x ) = (x-1) 0;g ( x ) = 1
。2)f ( x ) = x;g ( x ) =
。3)f ( x ) = x 2;f ( x ) = (x + 1) 2
(4)f ( x ) = | x |;g ( x ) =
(三)課堂練習(xí)
求下列函數(shù)的定義域
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來(lái)表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
函數(shù)概念教案10
學(xué)習(xí)目標(biāo):
(1)理解函數(shù)的概念
(2)會(huì)用集合與對(duì)應(yīng)語(yǔ)言來(lái)刻畫(huà)函數(shù),
(3)了解構(gòu)成函數(shù)的要素。
重點(diǎn):
函數(shù)概念的理解
難點(diǎn):
函數(shù)符號(hào)y=f(x)的理解
知識(shí)梳理:
自學(xué)課本P29—P31,填充以下空格。
1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。
2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫(xiě)為 。
3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要
。
4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):
、 ;② 。
5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a
(1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開(kāi)半閉區(qū)間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。
完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。
例題解析
題型一:函數(shù)的概念
例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )
練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。
題型二:相同函數(shù)的判斷問(wèn)題
例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與
、 與 其中表示同一函數(shù)的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數(shù)的定義域和值域問(wèn)題
例3:求函數(shù)f(x)= 的`定義域
練習(xí):課本P33練習(xí)A組 4.
例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。
當(dāng)堂檢測(cè)
1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( A )
A、 B、
C、 D、
2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個(gè)命題:
、 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;
② 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;
③ 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);
④ 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.
其中正確的有( B )
A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)
4、下列函數(shù)完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )
6、設(shè) ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數(shù) ,求 的值.( )
函數(shù)概念教案11
一、教材分析及處理
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識(shí)在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識(shí);函數(shù)的概念是運(yùn)動(dòng)變化和對(duì)立統(tǒng)一等觀點(diǎn)在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,《函數(shù)》教學(xué)設(shè)計(jì)。
對(duì)函數(shù)概念本質(zhì)的理解,首先應(yīng)通過(guò)與初中定義的比較、與其他知識(shí)的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過(guò)基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學(xué)重點(diǎn)是函數(shù)的概念,難點(diǎn)是對(duì)函數(shù)概念的本質(zhì)的理解。
學(xué)生現(xiàn)狀
學(xué)生在第一章的時(shí)候已經(jīng)學(xué)習(xí)了集合的概念,同時(shí)在初中時(shí)已學(xué)過(guò)一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識(shí)來(lái)理解函數(shù)概念,結(jié)合原有的知識(shí)背景,活動(dòng)經(jīng)驗(yàn)和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動(dòng)中,達(dá)到理解知識(shí)、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗(yàn)和情感體驗(yàn),是在教學(xué)設(shè)計(jì)中應(yīng)思考的。
二、教學(xué)三維目標(biāo)分析
1、知識(shí)與技能(重點(diǎn)和難點(diǎn))
(1)、通過(guò)實(shí)例讓學(xué)生能夠進(jìn)一步體會(huì)到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識(shí)的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會(huì)求簡(jiǎn)單函數(shù)的定義域、值域、判斷兩個(gè)函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過(guò)程與方法
函數(shù)的.概念及其相關(guān)知識(shí)點(diǎn)較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問(wèn)題:
(1)、首先通過(guò)多媒體給出實(shí)例,在讓學(xué)生以小組的形式開(kāi)展討論,運(yùn)用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識(shí),找出不同點(diǎn)與相同點(diǎn),實(shí)現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。
(3)、加強(qiáng)學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會(huì)本節(jié)知識(shí)點(diǎn),也要讓學(xué)生會(huì)自我主動(dòng)學(xué)習(xí)。
3、情感態(tài)度與價(jià)值觀
(1)、通過(guò)多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結(jié)論和觀點(diǎn),加上老師的輔助講解,培養(yǎng)學(xué)生的實(shí)踐能力和和大膽創(chuàng)新意識(shí),教案《《函數(shù)》教學(xué)設(shè)計(jì)》。
(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動(dòng)手能力和小組團(tuán)結(jié)能力。
三、教學(xué)器材
多媒體ppt課件
四、教學(xué)過(guò)程
教學(xué)內(nèi)容教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖
《函數(shù)》課題的引入(用時(shí)一分鐘)配著簡(jiǎn)單的音樂(lè),從簡(jiǎn)單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽(tīng)著悠揚(yáng)的音樂(lè),讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識(shí)走向生活
知識(shí)回顧:初中所學(xué)習(xí)的函數(shù)知識(shí)(用時(shí)兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡(jiǎn)單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡(jiǎn)單作圖認(rèn)真聽(tīng)老師回顧初中知識(shí),發(fā)現(xiàn)異同在初中知識(shí)的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊
思考與討論:通過(guò)給出的問(wèn)題,引出本節(jié)課的主要內(nèi)容(用時(shí)四分鐘)給出兩個(gè)簡(jiǎn)單的問(wèn)題讓同學(xué)們思考,講述初中內(nèi)容無(wú)法給出正確答案,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)結(jié)合老師所回顧的知識(shí),結(jié)合自己所掌握的知識(shí),思考老師給出的問(wèn)題,小組形式作討論,從簡(jiǎn)單問(wèn)題入手,循序漸進(jìn),引出本節(jié)主要知識(shí),回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識(shí),前后聯(lián)系、銜接
新知識(shí)的講解:從概念開(kāi)始講解本節(jié)知識(shí)(用時(shí)三分鐘)詳細(xì)講解函數(shù)的知識(shí),包括定義域,值域等,回到開(kāi)始提問(wèn)部分作答做筆記,專心聽(tīng)講講解函數(shù)概念,由知識(shí)講解回到問(wèn)題身上,解決問(wèn)題
對(duì)提問(wèn)的回答(用時(shí)五分鐘)引導(dǎo)學(xué)生自己解決開(kāi)始所提的兩個(gè)問(wèn)題,然后同個(gè)互動(dòng)給出最后答案通過(guò)與老師共同討論回答開(kāi)始問(wèn)題,總結(jié)更好的掌握函數(shù)概念,通過(guò)問(wèn)題來(lái)更好的掌握知識(shí)
函數(shù)區(qū)間(用時(shí)五分鐘)引入函數(shù)定義域的表示方法簡(jiǎn)潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法
注意點(diǎn)(用時(shí)三分鐘)做個(gè)簡(jiǎn)單的的回顧新內(nèi)容,把難點(diǎn)重點(diǎn)提出來(lái),讓同學(xué)們記住通過(guò)問(wèn)題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內(nèi)容和知識(shí)點(diǎn)
習(xí)題(用時(shí)十分鐘)給出習(xí)題,分析題意在稿紙上簡(jiǎn)單作答,回答問(wèn)題通過(guò)習(xí)題練習(xí)明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系
映射(用時(shí)兩分鐘)從概念方面講解映射的意義,象與原象在新知識(shí)的基礎(chǔ)上了解更多知識(shí),映射的學(xué)習(xí)給以后的知識(shí)內(nèi)容做更好的鋪墊
小結(jié)(用時(shí)五分鐘)簡(jiǎn)單講述本節(jié)的知識(shí)點(diǎn),重難點(diǎn)做筆記前后知識(shí)的連貫,總結(jié),使學(xué)生更明白知識(shí)點(diǎn)
五、教學(xué)評(píng)價(jià)
為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識(shí),獲得認(rèn)識(shí)客觀世界的體驗(yàn),本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場(chǎng)合考察問(wèn)題的不同側(cè)面,由淺入深。本課在教學(xué)時(shí)采用問(wèn)題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對(duì)函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對(duì)應(yīng),與初中時(shí)學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對(duì)應(yīng)既是函數(shù)知識(shí)的生長(zhǎng)點(diǎn),又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計(jì),通過(guò)探究、思考,培養(yǎng)了學(xué)生的實(shí)踐能力、觀察能力、判斷能力;通過(guò)揭示對(duì)象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)了學(xué)生的分析問(wèn)題、解決問(wèn)題和表達(dá)交流能力;通過(guò)案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過(guò)這樣的教學(xué)設(shè)計(jì),學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。
函數(shù)概念教案12
教學(xué)目標(biāo):
1.進(jìn)一步理解用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)的函數(shù)的概念,進(jìn)一步理解函數(shù)的本質(zhì)是數(shù)集之間的對(duì)應(yīng);
2.進(jìn)一步熟悉與理解函數(shù)的定義域、值域的定義,會(huì)利用函數(shù)的定義域與對(duì)應(yīng)法則判定有關(guān)函數(shù)是否為同一函數(shù);
3.通過(guò)教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的'知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
用對(duì)應(yīng)來(lái)進(jìn)一步刻畫(huà)函數(shù);求基本函數(shù)的定義域和值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
復(fù)述函數(shù)及函數(shù)的定義域的概念.
2.問(wèn)題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學(xué)生活動(dòng)
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡(jiǎn)單函數(shù)的值域;
3.探求簡(jiǎn)單的復(fù)合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的值域:
。1)按照對(duì)應(yīng)法則f,對(duì)于A中所有x的值的對(duì)應(yīng)輸出值組成的集合稱之
為函數(shù)的值域;
。2)值域是集合B的子集.
2.x g(x) f(x) f(g(x)),其中g(shù)(x)的值域即為f(g(x))的定義域;
四、數(shù)學(xué)運(yùn)用
(一)例題.
例1 已知函數(shù)f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).
例2 根據(jù)不同條件,分別求函數(shù)f(x)=(x-1)2+1的值域.
。1)x∈{-1,0,1,2,3};
。2)x∈R;
。3)x∈[-1,3];
(4)x∈(-1,2];
。5)x∈(-1,1).
例3 求下列函數(shù)的值域:
、伲 ;②= .
例4 已知函數(shù)f(x)與g(x)分別由下表給出:
x1234x1234
f(x)2341g(x)2143
分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.
(二)練習(xí).
(1)求下列函數(shù)的值域:
、伲2-x2;②=3-|x|.
。2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
。4)已知函數(shù)=f(x)的定義域?yàn)閇-1,2],求f(x)+f(-x)的定義域.
。5)已知f(x)的定義域?yàn)閇-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結(jié)
函數(shù)的對(duì)應(yīng)本質(zhì),函數(shù)的定義域與值域;
利用分解的思想研究復(fù)合函數(shù).
六、作業(yè)
課本P31-5,8,9.
函數(shù)概念教案13
一、教學(xué)目標(biāo)
【知識(shí)與技能】
理解函數(shù)的概念,能對(duì)具體函數(shù)指出定義域、對(duì)應(yīng)法則、值域。
【過(guò)程與方法】
通過(guò)對(duì)函數(shù)的學(xué)習(xí),進(jìn)一步體會(huì)集合與對(duì)應(yīng)的數(shù)學(xué)思想方法。
【情感、態(tài)度與價(jià)值觀】
在探索中感受到成功的喜悅,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】函數(shù)的概念。
【難點(diǎn)】從具體實(shí)例中抽象出函數(shù)概念。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
帶領(lǐng)學(xué)生復(fù)習(xí)初中階段函數(shù)的概念,并舉例說(shuō)明,從而引出高中階段對(duì)函數(shù)的`學(xué)習(xí)。
(二)講解新知
利用多媒體展示上一節(jié)的實(shí)例,例如:
(1)加油站儲(chǔ)油罐的儲(chǔ)油量和高度的關(guān)系;
。2)高速公路總里程與年份的關(guān)系。引導(dǎo)學(xué)生分析歸納以上兩個(gè)實(shí)例,變量分別是誰(shuí)、變量的范圍是什么、變量之間存在的關(guān)系是什么、這些例子有什么共同特點(diǎn)。
函數(shù)概念教案14
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。
托馬斯說(shuō):“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來(lái)刻畫(huà),是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測(cè)未來(lái)的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說(shuō):“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來(lái)刻畫(huà)函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來(lái)刻畫(huà)函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過(guò)程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過(guò)同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對(duì)應(yīng)的觀點(diǎn)來(lái)定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域.
1.知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;
⑶會(huì)求簡(jiǎn)單函數(shù)的定義域和值域
2.過(guò)程與方法目標(biāo):
、磐ㄟ^(guò)豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實(shí)例中,通過(guò)對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用.
3.情感、態(tài)度與價(jià)值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來(lái)定義函數(shù),高中是用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說(shuō)明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的`重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過(guò)表面的語(yǔ)言描述抓住概念的精髓。
2.教學(xué)難點(diǎn):第一:從實(shí)際問(wèn)題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.
難點(diǎn)依據(jù):數(shù)學(xué)語(yǔ)言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說(shuō)明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過(guò)程,從初中的函數(shù)概念自然過(guò)度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過(guò)程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問(wèn)題、通過(guò)自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
函數(shù)概念教案15
各位領(lǐng)導(dǎo)老師:
大家好!
今天我說(shuō)課的內(nèi)容是函數(shù)的近代定義也就是函數(shù)的第一課時(shí)內(nèi)容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對(duì)函數(shù)概念理解的程度會(huì)直接影響數(shù)學(xué)其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
。1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
。2)能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。
(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的.依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的學(xué)生來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)高考有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二.新課講授:
。1)接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:A→B,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對(duì)應(yīng)法則f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對(duì)應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在B中是否有唯一確定的元素與之對(duì)應(yīng)。
。2)鞏固練習(xí)課本52頁(yè)第八題。
此練習(xí)能讓學(xué)生更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1.給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對(duì)應(yīng)法則f),并說(shuō)明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):
2.函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3.f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4.f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。
5.集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6.“f:A→B”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三.講解例題
例1.問(wèn)y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0+1
畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1.映射的定義。
2.函數(shù)的近代定義。
3.函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4.函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書(shū)設(shè)計(jì)
書(shū)本P51習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
【函數(shù)概念教案】相關(guān)文章:
《函數(shù)的概念》教案06-25
函數(shù)概念教案07-25
數(shù)學(xué)函數(shù)的概念教學(xué)反思03-06
集合的概念教案05-31