《簡(jiǎn)易方程》教學(xué)反思
身為一位到崗不久的教師,課堂教學(xué)是我們的工作之一,借助教學(xué)反思我們可以快速提升自己的教學(xué)能力,那要怎么寫(xiě)好教學(xué)反思呢?下面是小編精心整理的《簡(jiǎn)易方程》教學(xué)反思,歡迎閱讀與收藏。
《簡(jiǎn)易方程》教學(xué)反思1
開(kāi)學(xué)兩周了,經(jīng)過(guò)開(kāi)學(xué)后的適應(yīng),教學(xué)工作已經(jīng)逐步進(jìn)入了正常軌道。其實(shí)說(shuō)是適應(yīng),只是我的適應(yīng),孩子們并沒(méi)有表現(xiàn)出所謂的"開(kāi)學(xué)綜合征",開(kāi)學(xué)近兩周他們都表現(xiàn)得很棒!本來(lái)剛開(kāi)學(xué),擔(dān)心孩子們收不回心來(lái),一直布置很少的一點(diǎn)家庭作業(yè),甚至有時(shí)候只是布置預(yù)習(xí)而已。當(dāng)然,這樣做也許也確實(shí)讓孩子們能逐漸進(jìn)入學(xué)習(xí)狀態(tài),避免出現(xiàn)開(kāi)學(xué)倦怠或反感情緒。
在知識(shí)方面,原來(lái)?yè)?dān)心孩子們對(duì)方程會(huì)有不適應(yīng)或抵制情緒,結(jié)果孩子們都表現(xiàn)不錯(cuò)。方程解法的繁瑣并沒(méi)有讓孩子們感到厭倦,因?yàn)殡m說(shuō)解方程書(shū)寫(xiě)步驟較多,但規(guī)律明顯,順向思維不需要過(guò)多的思維過(guò)程,抓住關(guān)鍵詞列方程就迎刃而解了。最近主要的問(wèn)題是形如12-X=5或56÷X=14這樣的方程,用等式的性質(zhì)來(lái)解很別扭,而用傳統(tǒng)的方法又怕孩子混淆。其實(shí)這個(gè)問(wèn)題教材在設(shè)計(jì)時(shí)早有考慮,原則上這種類(lèi)型的方程不做要求,因此課本上并沒(méi)有出現(xiàn)這樣的題目。但孩子們?cè)诮鉀Q問(wèn)題時(shí)自己會(huì)列出這樣的方程,只好臨時(shí)先提醒孩子盡量避免列出X在減數(shù)或除數(shù)位置上的方程。這樣做的目的并不是要刻意回避這種問(wèn)題,而是考慮到孩子們對(duì)現(xiàn)在的方法還不夠熟練,不宜教給他們另外一種全然不同的'解法,這個(gè)問(wèn)題且等孩子們熟練掌握了解方程的方法后再說(shuō)吧!反正教材是不要求做這種題的。
還有個(gè)問(wèn)題就是在解決問(wèn)題時(shí),算術(shù)方法與列方程的選擇。最近一直在學(xué)習(xí)列方程解應(yīng)用題,所以孩子們想當(dāng)然地每道題都列方程解答。教材上雖然有一道題目是指導(dǎo)孩子體驗(yàn)理解用算術(shù)方法與方程方法解決問(wèn)題的區(qū)別,能直接套用公式或順向思維列式的就直接用算術(shù)方法解決比較簡(jiǎn)捷,用逆向思維考慮的問(wèn)題可以用方程解決比較簡(jiǎn)捷。可能是由于初學(xué),或者因?yàn)闆](méi)有養(yǎng)成認(rèn)真分析數(shù)量關(guān)系的習(xí)慣,孩子們?cè)谶@方面還比較困惑,需要在以后的教學(xué)中指導(dǎo)孩子們逐步理解和掌握。慢慢來(lái),不要急。
《簡(jiǎn)易方程》教學(xué)反思2
“簡(jiǎn)易方程的整理與復(fù)習(xí)”是人教版數(shù)學(xué)五年級(jí)上學(xué)期教學(xué)內(nèi)容,本課的教學(xué)目標(biāo)是通過(guò)練習(xí)使學(xué)生進(jìn)一步加強(qiáng)對(duì)方程意義的理解,知道方程的解與解方程的區(qū)分,等式與方程的區(qū)分。并能根據(jù)四則運(yùn)算之間的關(guān)系解方程。能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。教學(xué)重點(diǎn)是理解方程的意義,并能正確解方程。教學(xué)難點(diǎn)是能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。在教學(xué)本課時(shí),我主要是通過(guò)練習(xí),對(duì)簡(jiǎn)易方程的有關(guān)概念進(jìn)行梳理,使得學(xué)生進(jìn)一步加強(qiáng)理解和應(yīng)用,達(dá)到復(fù)習(xí)課的教學(xué)要求。在練習(xí)時(shí),我以“闖關(guān)”的形式進(jìn)行,教學(xué)設(shè)計(jì)新穎,倍受學(xué)生喜歡。結(jié)束后,學(xué)生的掌握情況很好,興趣也很高。但如果這節(jié)課能設(shè)計(jì)一些更有坡度的練習(xí),這樣就能在課堂上發(fā)現(xiàn)學(xué)生的.“錯(cuò)”,在課堂上“糾錯(cuò)”。那么這節(jié)課會(huì)更豐滿,學(xué)生學(xué)習(xí)到的知識(shí)會(huì)更全面,效果就更好了。要達(dá)得這一程度,我還要繼續(xù)加強(qiáng)自身學(xué)習(xí),多鉆研多思考,使自己的課堂能成為吸引學(xué)生的“游樂(lè)場(chǎng)”。
《簡(jiǎn)易方程》教學(xué)反思3
在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
在學(xué)習(xí)中,我以多媒體中天平的平衡來(lái)呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來(lái)學(xué)生感覺(jué)活動(dòng)是獲取真知的有效途徑,通過(guò)以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
二、等式性質(zhì)解方程——初步感悟它的妙用
在課堂上學(xué)生對(duì)用等式的性質(zhì)來(lái)解方程感到很陌生,在他們?cè)械慕?jīng)驗(yàn)中更喜歡用加減法各部分的`關(guān)系來(lái)解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來(lái)解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來(lái)解方程的習(xí)慣。
在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺(jué)得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。
新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法雖然說(shuō)讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑
1、從教材的編排上,整體難度下降,有意避開(kāi)了,形如:45—X=23 24÷X =6等類(lèi)型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來(lái)解方程,但用這樣的方法來(lái)解方程之后,書(shū)本不再出現(xiàn)X前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出X在后面的方程,我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來(lái)說(shuō),我們會(huì)讓他們嘗試接受——解答X在后面這類(lèi)方程的解答方法,就是等號(hào)二邊同時(shí)加上X,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充X前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免X前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。
《簡(jiǎn)易方程》教學(xué)反思4
《解簡(jiǎn)易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來(lái)教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:
老方法:
x + 4 = 20
x = 20-4
依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。
新方法:
x + 4 = 20
x + 4-4=20-4
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
改革的原因(摘自教學(xué)參考書(shū)):
新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。
從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。
那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒(méi)有什么問(wèn)題? 在我的教學(xué)過(guò)程中真的出現(xiàn)了問(wèn)題 。
1.無(wú)法解如a-x=b和ax=b此類(lèi)的方程
新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類(lèi)的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與xa=b一類(lèi)的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂相比原來(lái)方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒(méi)有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的'基本性質(zhì)解a-x=b,方程變形的過(guò)程及算理解釋比較麻煩;而ax=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。
我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類(lèi)方程,這似乎不妥。更重要的是,回避這兩類(lèi)方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問(wèn)題。因?yàn)楫?dāng)需要列出形如a-x=b或ax=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。
如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?
合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類(lèi)的方程。又如:課本第62頁(yè)中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無(wú)法求解,所以又轉(zhuǎn)成Х+28=40。
很明顯,第二個(gè)方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問(wèn)題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說(shuō)明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來(lái)解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?
我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問(wèn)題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見(jiàn)、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。
2.解方程的書(shū)寫(xiě)過(guò)程太繁瑣
教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫(xiě)出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫(xiě)上的繁瑣。
因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了
從這兩個(gè)方面來(lái)看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來(lái)解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問(wèn)題。那么,如果說(shuō)用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問(wèn)題,那我們又如何是好呢?
《簡(jiǎn)易方程》教學(xué)反思5
今天早上在庫(kù)溝小學(xué)聽(tīng)了張福華老師的《簡(jiǎn)易方程的整理和復(fù)習(xí)》這節(jié)復(fù)習(xí)課。這是我第一次聽(tīng)復(fù)習(xí)課,以往只是從教學(xué)策略上了解復(fù)習(xí)課的教學(xué)流程,當(dāng)今天真真正正的傾聽(tīng)了一節(jié)復(fù)習(xí)課后,感受頗深,所學(xué)甚多,只奈何有言吐不出,下面就簡(jiǎn)單說(shuō)一些聽(tīng)完這節(jié)課的體會(huì)。
首先,張老師的語(yǔ)言簡(jiǎn)練干脆,善于利用名言名句。
在課的開(kāi)始,大屏幕上就展示出了俄國(guó)烏申斯基的一句話:“裝著一些片段的,沒(méi)有聯(lián)系的知識(shí)的頭腦,就像一個(gè)亂七八糟的倉(cāng)庫(kù),主人從那里是什么也找不出來(lái)的!边@句話的展示,讓學(xué)生一下子就了解了整理的重要性,也了解了這節(jié)課的目的所在。在回顧整理,構(gòu)建網(wǎng)絡(luò)這一環(huán)節(jié),張老師在讓學(xué)生自己看課本例題的知識(shí)點(diǎn)時(shí)又說(shuō)了一句“不動(dòng)筆墨不讀書(shū)”,提醒了學(xué)生看例題時(shí)可以適時(shí)的進(jìn)行批畫(huà),將遺忘的知識(shí)點(diǎn)突出顯示出來(lái)。在課的`最后又課件展示了韋達(dá)和愛(ài)因斯坦的名言警句。
其次,目錄歸納知識(shí)點(diǎn),清楚明了。
我想所有的老師都會(huì)頭疼復(fù)習(xí)某一單元或某一冊(cè)課本時(shí)知識(shí)點(diǎn)的歸納,只奈何沒(méi)有更好的方法可以把所有知識(shí)點(diǎn)系統(tǒng)的展現(xiàn)給學(xué)生。本節(jié)課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識(shí)點(diǎn)的區(qū)別和聯(lián)系清楚的擺了出來(lái),方便了學(xué)生的回顧和整理。
最后,練習(xí)充實(shí)有趣,層次分明。
闖關(guān)形式的練習(xí)提高了學(xué)生的積極性,激發(fā)了學(xué)生的好勝心。在一,二,三的闖關(guān)中,依次將基礎(chǔ)知識(shí)點(diǎn),重難點(diǎn)進(jìn)行了練習(xí),穩(wěn)固。學(xué)生在回答闖關(guān)的答案時(shí),張老師經(jīng)常會(huì)問(wèn)一個(gè)為什么,引導(dǎo)學(xué)生對(duì)知識(shí)點(diǎn)進(jìn)行再回顧。例如,在一名學(xué)生回答bX8等于8b時(shí),問(wèn)為什么不是b8?在學(xué)生回答aXa=a的平方時(shí),問(wèn)為什么不是2a?看似不經(jīng)意的詢問(wèn),卻鞏固了細(xì)微處的知識(shí)點(diǎn)。
當(dāng)然,張老師的課還有許多值得我學(xué)習(xí)的地方。例如,創(chuàng)設(shè)了有效地復(fù)習(xí)情景,親和力強(qiáng),能及時(shí)喚起回憶,將零散的知識(shí)系統(tǒng)化等等。通過(guò)這節(jié)課,讓我更清楚的了解了復(fù)習(xí)課的教學(xué)模式,對(duì)以后上好復(fù)習(xí)課有了更多的信心。
《簡(jiǎn)易方程》教學(xué)反思6
本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來(lái)教學(xué)解方程。形如x±a=b一類(lèi)的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類(lèi)的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類(lèi)的方程,學(xué)生就無(wú)從下手了,如果利用等式的基本性質(zhì)解,方程變形的過(guò)程及算理解釋比較麻煩。解決問(wèn)題時(shí)當(dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),我就要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我覺(jué)得回避這兩類(lèi)問(wèn)題不是很好的方法,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會(huì)解,但你也不能說(shuō)這個(gè)方程列錯(cuò)了呀。
因此我當(dāng)有學(xué)生列了a-x=b或a÷x=b的`方程時(shí),我借機(jī)教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的方法;A(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無(wú)法解答此類(lèi)問(wèn)題。
另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫(xiě)出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫(xiě)上的繁瑣。因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了。
看來(lái)教材利用等式的基本性質(zhì)來(lái)解簡(jiǎn)易方程也是存在著一些問(wèn)題,不知各位老師有什么好的方法來(lái)解決這些問(wèn)題呢?請(qǐng)不吝賜教!
《簡(jiǎn)易方程》教學(xué)反思7
長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù),解簡(jiǎn)易方程教學(xué)反思。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接,教學(xué)反思《解簡(jiǎn)易方程教學(xué)反思》。通教材的老師也主張用等式的基本性質(zhì)解方程。
在我的教學(xué)過(guò)程中卻出現(xiàn)了這樣的問(wèn)題 ,利用等式的基本性質(zhì)解形如x+a=b與x-a=b, ax=b與x÷a=b一類(lèi)的'方程,學(xué)生方法掌握起來(lái)比較簡(jiǎn)單。但寫(xiě)起來(lái)比較繁瑣。然而遇到a-x=b、a÷x=b的方程時(shí),由于小學(xué)生還沒(méi)有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,如果利用等式的基本性質(zhì)解,方程變形的過(guò)程及算理解釋比較麻煩;但是在教學(xué)過(guò)程中我們不可避免地會(huì)遇到根據(jù)現(xiàn)實(shí)情境從順向思考列出X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程,要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。于是,我又要求學(xué)生遇到X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程時(shí),要求學(xué)生會(huì)用減法和除法各部分之間的關(guān)系來(lái)做。但是,我發(fā)現(xiàn)這讓有些孩子無(wú)所適從。我現(xiàn)在感到很困惑,我們到底怎樣做才是合理得呢?懇請(qǐng)各位老師指教。
《簡(jiǎn)易方程》教學(xué)反思8
記得我以前上學(xué)的時(shí)候,解最簡(jiǎn)單的方程的方式是這樣的:比如方程+5=8就是方程=8-5,方程=3。那時(shí)覺(jué)得很好懂,但是現(xiàn)在五年級(jí)課本上是這樣的:方程+5=8,方程+5-5=8-5,方程=3?雌饋(lái)比較復(fù)雜。開(kāi)始接觸到這個(gè)課程時(shí)看到教材例題中的解法感覺(jué)很疑惑,百思不得其解。為什么新課程的“解方程”教學(xué)要“繞遠(yuǎn)路”?如果單單從簡(jiǎn)單的加減乘除的方程來(lái)看,第一種方法無(wú)疑是簡(jiǎn)單易懂而且步驟少,而第二種方法就相對(duì)復(fù)雜了。那教材這樣改的目的是什么呢?深入研究教參后我體會(huì)很深,明白了新課程數(shù)學(xué)教學(xué)要“瞻前顧后”的道理。
新課程的改革,更加注重知識(shí)的遷移和聯(lián)系,使得小學(xué)的`知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個(gè)加數(shù)=和-另一個(gè)加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個(gè)因數(shù)=積÷另一個(gè)因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡(jiǎn)單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)等式不變,和等式的兩邊同時(shí)乘或除以同一個(gè)數(shù)(0除外),等式不變進(jìn)行解方程的。新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來(lái)也有規(guī)律可循了。于是,我在教學(xué)時(shí)充分地利用天平實(shí)物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡(jiǎn)易方程時(shí)學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)減(或加)同一個(gè)數(shù),未知數(shù)乘(或除)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)除(或乘)同一個(gè)數(shù)即可。一般不會(huì)出現(xiàn)運(yùn)算符號(hào)弄錯(cuò)的現(xiàn)象了。所以雖然復(fù)雜,但是更容易掌握。
《簡(jiǎn)易方程》教學(xué)反思9
在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來(lái)求出方程中的未知數(shù),而今的人教版教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會(huì)解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
1、在學(xué)習(xí)中,我以天平的平衡來(lái)呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來(lái)學(xué)生感覺(jué)比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個(gè)數(shù)的目的和依據(jù)。
我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)
2、學(xué)生親自動(dòng)手反復(fù)不斷的進(jìn)行操作。(學(xué)生動(dòng)手操作)
在此基礎(chǔ)上,我再做進(jìn)一步的引導(dǎo)。
活動(dòng)是獲取真知的有效途徑,通過(guò)以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
3、教師:請(qǐng)同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會(huì)出現(xiàn)什么現(xiàn)象?你能列出幾個(gè)這樣的方程嗎?(學(xué)生同桌之間通過(guò)充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個(gè)等式(當(dāng)天平平衡時(shí))的話,等式的兩邊都減去同一個(gè)數(shù),等式仍然成立。通過(guò)引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過(guò)學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個(gè)數(shù),等式仍然成立。
二、利用等式性質(zhì)解方程-——初步感悟它的妙用
在課堂上學(xué)生對(duì)用等式的性質(zhì)來(lái)解方程感到很陌生,在他們?cè)械慕?jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來(lái)解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來(lái)解方程的優(yōu)越性,從而養(yǎng)成用等式的'性質(zhì)來(lái)解方程的習(xí)慣。
在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺(jué)得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。
告訴學(xué)生利用等式的性質(zhì)來(lái)解方程熟練以后特別快。同時(shí)強(qiáng)調(diào)書(shū)寫(xiě)格式。通過(guò)教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡(jiǎn)單的方程,但我認(rèn)為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問(wèn)題很多。其表現(xiàn)在:
1、從教材的編排上,整體難度下降,有意避開(kāi)了形如:66—2方程=30等類(lèi)型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來(lái)解方程,但用這樣的方法來(lái)解方程之后,書(shū)本不再出現(xiàn)方程在后面的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出方程在后面的方程嗎?我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來(lái)說(shuō),我們會(huì)讓他們嘗試接受——解答方程在后面這類(lèi)方程的解答方法,就是等號(hào)二邊同時(shí)加上方程,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,可實(shí)際上反而是多了。教師要給他們補(bǔ)充方程在后面的方程的解法。要教他們列方程時(shí)怎么避免方程在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來(lái)的老方法交給同學(xué)們,以便備用或請(qǐng)他們根據(jù)具體情況選擇適當(dāng)?shù)慕忸}方法。
3、我個(gè)人認(rèn)為:現(xiàn)行教材的某些地方還有待于進(jìn)一步的改進(jìn)與完善。
《簡(jiǎn)易方程》教學(xué)反思10
在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識(shí),效果較好。
出示例題2,小組合作學(xué)習(xí),討論:
、倌闶窃鯓永斫鈭D意的?
②你是如何列方程的?
、勰闶歉鶕(jù)什么解方程的?
、茉鯓訖z驗(yàn)方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。
指名回答,說(shuō)說(shuō)自己的.分析。你對(duì)他的分析有什么要問(wèn)的嗎?
教師總結(jié)解題關(guān)鍵。
教學(xué)例3時(shí),讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個(gè)人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。
最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識(shí)?解方程的關(guān)鍵是什么?
充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:
4x-12=20 3x=15 x+7=15 2x+3×2=
18-2x=2 15÷3+4x=
鞏固知識(shí),激發(fā)興趣。
《簡(jiǎn)易方程》教學(xué)反思11
在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識(shí),效果較好。
出示例題2,小組合作學(xué)習(xí),討論:①你是怎樣理解圖意的?②你是如何列方程的?③你是根據(jù)什么解方程的?④怎樣檢驗(yàn)方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。指名回答,說(shuō)說(shuō)自己的分析。你對(duì)他的分析有什么要問(wèn)的嗎?教師總結(jié)解題關(guān)鍵。
教學(xué)例3時(shí),讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個(gè)人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的`習(xí)慣與能力。
最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識(shí)?解方程的關(guān)鍵是什么?
充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:4x-12=203x=15x+7=152x+3×2=16
18-2x=215÷3+4x=25
鞏固知識(shí),激發(fā)興趣。
《簡(jiǎn)易方程》教學(xué)反思12
長(zhǎng)期以來(lái),在小學(xué)教學(xué)解簡(jiǎn)易方程,是依據(jù)加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。這種方法到了中學(xué)又要另起爐灶,重新開(kāi)始。根據(jù)新課標(biāo)的要求,人教版教材從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法,使學(xué)生擺脫算術(shù)思維方法中的局限性,有利于加強(qiáng)中小學(xué)的知識(shí)銜接。
猜想是學(xué)生學(xué)習(xí)數(shù)學(xué)的一種重要方式,通過(guò)讓學(xué)生綜合已有的知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上經(jīng)歷等式的變化過(guò)程,不僅讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,還為猜想等式的`性質(zhì)奠定了良好的基礎(chǔ)。學(xué)生一旦作出了猜想,就會(huì)迫不及待的想去驗(yàn)證自己的猜想是否正確,從而主動(dòng)地去探索新知。
任何猜想都必須經(jīng)過(guò)驗(yàn)證,才能確定是否正確,而驗(yàn)證的過(guò)程也正是學(xué)生主動(dòng)學(xué)習(xí)探索數(shù)學(xué)知識(shí)的過(guò)程。學(xué)生通過(guò)自己動(dòng)手用天平稱(chēng)一稱(chēng),驗(yàn)證自己的猜想,以一種自主探究的方式進(jìn)一步認(rèn)識(shí)了等式的性質(zhì),為后面學(xué)習(xí)解方程奠定了良好的基礎(chǔ)。“舉出生活中的例子”體現(xiàn)了數(shù)學(xué)來(lái)源于生活,學(xué)到的數(shù)學(xué)知識(shí)也要應(yīng)用到生活當(dāng)中去的理念,讓學(xué)生體會(huì)到數(shù)學(xué)就在自己的身邊。這樣的設(shè)計(jì)不但極大地激發(fā)了學(xué)生的學(xué)習(xí)興趣,還有利于培養(yǎng)學(xué)生的自主探究能力和創(chuàng)新能力。
學(xué)生在合作操作中,已經(jīng)對(duì)解方程有了一定的基礎(chǔ)和認(rèn)識(shí),能夠大概地說(shuō)出解方程的過(guò)程和依據(jù),而又一次讓同學(xué)之間同桌說(shuō)一說(shuō)后再全班交流體現(xiàn)了本節(jié)課的學(xué)習(xí)重點(diǎn)“理解并利用等式的性質(zhì)解方程”,“為什么要減去3”突破本節(jié)課的難點(diǎn)。在這個(gè)環(huán)節(jié)中教師還有針對(duì)性地指導(dǎo)了書(shū)寫(xiě)的規(guī)范性和檢驗(yàn)的過(guò)程。師生之間的共同探討,顯示了一種平等的師生關(guān)系。
練習(xí)中學(xué)生加深了對(duì)“方程的解”的認(rèn)識(shí),抓住了利用等式的性質(zhì)這一依據(jù)去解方程。不同層次的練習(xí)照顧了學(xué)生之間學(xué)習(xí)水平的差異,3X=8.4對(duì)等式的性質(zhì)進(jìn)行了拓展,有利于發(fā)散學(xué)生的思維。最后交流學(xué)習(xí)的收獲促進(jìn)了學(xué)生形成積極的學(xué)習(xí)心理。
《簡(jiǎn)易方程》教學(xué)反思13
在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊(cè)《簡(jiǎn)易方程》時(shí),發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:
以往的教法是利用“兩個(gè)加數(shù)相加,求一個(gè)加數(shù)就用和減去另一個(gè)加數(shù),即:加數(shù)=和-加數(shù);兩個(gè)因數(shù)相乘,求一個(gè)因數(shù)就用積除以另一個(gè)因數(shù),即:因數(shù)=積÷因數(shù)”;
現(xiàn)行的教法和初中類(lèi)似,即:解方程時(shí)利用方程兩邊同時(shí)加上或減去一個(gè)數(shù)或同時(shí)乘以或除以一個(gè)不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項(xiàng)與合并同類(lèi)項(xiàng),思想方法卻是相同的。
在教學(xué)中發(fā)現(xiàn)小學(xué)生對(duì)這種方法掌握較困難,主要表現(xiàn)在:
第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;
第二,用代數(shù)式表示一個(gè)得數(shù)或結(jié)果不理解;
第三,字母與數(shù),字母與字母之間的.簡(jiǎn)單運(yùn)算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個(gè)數(shù)。
我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的問(wèn)題中用算式很難解出,用方程卻簡(jiǎn)單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。
教學(xué)實(shí)踐中我們發(fā)現(xiàn)通過(guò)練習(xí)學(xué)生還是可以掌握的很好的。
《簡(jiǎn)易方程》教學(xué)反思14
現(xiàn)行第九冊(cè)數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實(shí)施改革新內(nèi)容,其中的利弊在于:
1、教改方向有點(diǎn)聚向七年級(jí)的教學(xué)方法,意圖是與七年級(jí)的教學(xué)接軌,這種設(shè)計(jì)本來(lái)是一件好事,讓小學(xué)生盡快接受初中一年級(jí)(七年級(jí))教學(xué)方法,并為七年級(jí)打下良好的學(xué)習(xí)基礎(chǔ)。
2、課程改革改在五年級(jí)第一學(xué)期就有點(diǎn)不夠恰當(dāng)了,因?yàn)槲迥昙?jí)第一學(xué)期既沒(méi)有學(xué)約分,更沒(méi)有學(xué)六年級(jí)的倒數(shù),這樣使教師教起來(lái)非常困難,學(xué)生對(duì)這個(gè)知識(shí)的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識(shí)來(lái)解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2X。再根據(jù)“一個(gè)因數(shù)=積÷另一個(gè)因數(shù)”就可以求出X了。
而新教材的教法是方程兩邊同時(shí)×2X,先把方程左邊的2X消去,而20÷2X×2X從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級(jí)學(xué)混合運(yùn)算都是這樣要求學(xué)生計(jì)算的)這樣就會(huì)使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的右邊出現(xiàn)了10×2X,這時(shí)又要在方程的兩邊同時(shí)除以10,便得到2=2X,再把2X和2調(diào)換位置,成為2X=2,然后再方程兩邊同時(shí)除以2,才求出X=1,這種算法既費(fèi)時(shí),對(duì)成績(jī)中等以下的學(xué)生又難理解,就會(huì)導(dǎo)致相當(dāng)部分學(xué)生對(duì)這部分知識(shí)落下,并對(duì)今后的`學(xué)習(xí)會(huì)都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對(duì)知識(shí)的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。
3、在稍復(fù)雜的方程的內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時(shí)進(jìn)行,在同一節(jié)課要解決兩個(gè)對(duì)于小學(xué)生來(lái)說(shuō)都是難點(diǎn)的學(xué)習(xí)內(nèi)容,至于教師是沒(méi)問(wèn)題的,但對(duì)學(xué)生來(lái)說(shuō)難度就大了,首先,前面所說(shuō)的解方程是比較簡(jiǎn)單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進(jìn)行學(xué)習(xí)稍復(fù)雜的方程更難掌握。
其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開(kāi)的結(jié),所以對(duì)怎樣運(yùn)用好的方法去進(jìn)行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識(shí)采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達(dá)到為七年級(jí)打好基礎(chǔ)的目的。
以上三點(diǎn)是本人在教簡(jiǎn)易方程中感受最深的淺見(jiàn),不知各位同行是否有這種感受,請(qǐng)各位同行多提這新教材好教學(xué)方法,本人樂(lè)意接受。謝謝!
《簡(jiǎn)易方程》教學(xué)反思15
在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
在學(xué)習(xí)中,我以多媒體中天平的平衡來(lái)呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來(lái)學(xué)生感覺(jué)活動(dòng)是獲取真知的有效途徑,通過(guò)以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
二、等式性質(zhì)解方程——初步感悟它的妙用
在課堂上學(xué)生對(duì)用等式的性質(zhì)來(lái)解方程感到很陌生,在他們?cè)械慕?jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來(lái)解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來(lái)解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來(lái)解方程的習(xí)慣。
在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺(jué)得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。
新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法雖然說(shuō)讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑
1、從教材的編排上,整體難度下降,有意避開(kāi)了,形如:45—方程=23 24÷方程=6等類(lèi)型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的.方法來(lái)解方程,但用這樣的方法來(lái)解方程之后,書(shū)本不再出現(xiàn)方程前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出方程在后面的方程,我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來(lái)說(shuō),我們會(huì)讓他們嘗試接受——解答方程在后面這類(lèi)方程的解答方法,就是等號(hào)二邊同時(shí)加上方程,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充方程前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免方程前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。
【《簡(jiǎn)易方程》教學(xué)反思】相關(guān)文章:
簡(jiǎn)易方程教學(xué)反思02-26
解簡(jiǎn)易方程教學(xué)反思04-07
簡(jiǎn)易方程教學(xué)反思(集錦15篇)03-27