亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

乘法分配律教學(xué)反思

時(shí)間:2024-10-18 02:32:18 教學(xué)反思 我要投稿

乘法分配律教學(xué)反思

  身為一位到崗不久的教師,我們要在教學(xué)中快速成長,在寫教學(xué)反思的時(shí)候可以反思自己的教學(xué)失誤,優(yōu)秀的教學(xué)反思都具備一些什么特點(diǎn)呢?以下是小編精心整理的乘法分配律教學(xué)反思,希望對(duì)大家有所幫助。

乘法分配律教學(xué)反思

乘法分配律教學(xué)反思1

  乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點(diǎn)是理解乘法分配律的意義,難點(diǎn)是利用乘法分配律靈活地進(jìn)行簡便計(jì)算。

  在課堂上,創(chuàng)設(shè)了植樹活動(dòng)的情境,求一共有多少名同學(xué)參加了植樹活動(dòng)。在課堂中,鼓勵(lì)學(xué)生獨(dú)立思考,能用兩種方法解答出來,然后讓學(xué)生對(duì)比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。

  在學(xué)生理解了乘法分配律后,運(yùn)用變式練習(xí)加深對(duì)乘法分配律意義的理解,讓學(xué)生不僅知道兩個(gè)數(shù)的。和與一個(gè)數(shù)相乘可以寫成兩個(gè)積相加的形式,還要知道兩個(gè)積相加的形式可以寫成兩個(gè)數(shù)的.和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。

  通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會(huì)背用字母表示的式子,但是不會(huì)靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。

  所以在復(fù)習(xí)鞏固時(shí),要加強(qiáng)乘法結(jié)合律與乘法分配律的對(duì)比,讓學(xué)生對(duì)這兩個(gè)運(yùn)算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對(duì)乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運(yùn)算定律進(jìn)行簡便計(jì)算。

乘法分配律教學(xué)反思2

  乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個(gè)定律中的難點(diǎn)。故而,對(duì)于乘法分配律的教學(xué),我沒有把重點(diǎn)放在數(shù)學(xué)語言的表達(dá)上,而是把重點(diǎn)放在讓學(xué)生通過多種方法的計(jì)算去完整地感知,對(duì)所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗(yàn)證……

  1、關(guān)注學(xué)生已有的知識(shí)經(jīng)驗(yàn)。以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識(shí)背景密切相關(guān)的感興趣的學(xué)習(xí)情境――為參加“陽光伙伴”的32 名運(yùn)動(dòng)員購買統(tǒng)一服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識(shí)經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。

  2、展示知識(shí)的發(fā)生過程,引導(dǎo)學(xué)生積極主動(dòng)探究。先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(35+25 )×32=35 ×32+25 ×32 這個(gè)等式,讓學(xué)生觀察,初步感知“乘法分配律”。再根據(jù)“老師還有其他選擇嗎”?這一問題,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求學(xué)生照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的.規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識(shí)形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,而且培養(yǎng)學(xué)生主動(dòng)探究、發(fā)現(xiàn)知識(shí)的能力。

  3、教完之后,感覺在練習(xí)的設(shè)計(jì)上,還太拘禮與課本,雖然引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但沒有相配套的練習(xí)使學(xué)生對(duì)所學(xué)知識(shí)加以鞏固、應(yīng)用。對(duì)學(xué)生掌握知識(shí)的情況不能及時(shí)反饋,對(duì)如何用活、用好教材還需進(jìn)行進(jìn)一步的思考。

  

乘法分配律教學(xué)反思3

  1、情境的創(chuàng)設(shè)激發(fā)了學(xué)生的計(jì)算熱情。

  讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)數(shù)學(xué),這是新課標(biāo)倡導(dǎo)的新理念。我聯(lián)系學(xué)生的生活實(shí)際,創(chuàng)設(shè)了學(xué)生熟悉的購買家具的場(chǎng)景,配上我生動(dòng)的語言敘述,一下子就把學(xué)生代入到了一個(gè)有數(shù)學(xué)味的問題情境中,吸引了所有學(xué)生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據(jù)小紅家的需要,你們能提出哪些數(shù)學(xué)問題?更是激發(fā)了學(xué)生的思維,學(xué)生個(gè)個(gè)積極動(dòng)腦,躍躍欲試。在學(xué)生充分提出各種問題的基礎(chǔ)上,我選擇了有代表性的一個(gè)問題讓學(xué)生獨(dú)立解決,極大地激發(fā)了學(xué)生的計(jì)算熱情。這一環(huán)節(jié)的教學(xué),讓學(xué)生經(jīng)歷了因用而算、以算激用的過程,將算與用緊密結(jié)合。

  2、多層的設(shè)計(jì)有利于學(xué)生數(shù)學(xué)模型的建立。

  首先讓學(xué)生通過獨(dú)立計(jì)算,交流計(jì)算方法,敘述計(jì)算過程等一系列的筆算乘法的技能訓(xùn)練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的'區(qū)別是什么?在乘的時(shí)候,有什么不同呢?如果是四位數(shù)、五位數(shù)乘一位數(shù),你認(rèn)為該怎么乘呢?這兩個(gè)問題的討論、交流,引導(dǎo)學(xué)生進(jìn)行整理反思,讓學(xué)生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),進(jìn)而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計(jì)算方法其實(shí)都是一樣的,從而幫助學(xué)生將零散的知識(shí)串起來,有利于學(xué)生數(shù)學(xué)模型的建立。

  需要改進(jìn)的地方是:在學(xué)生探索出筆算方法后,我因?yàn)閾?dān)心學(xué)生沒有聽懂,怕學(xué)生做錯(cuò),說錯(cuò),故而引導(dǎo)太細(xì),學(xué)生的學(xué)習(xí)主動(dòng)性調(diào)動(dòng)的不夠。如果我能充分相信學(xué)生,大膽放手,讓學(xué)生獨(dú)立地去想,去做,去說,相信學(xué)生的。表現(xiàn)會(huì)更出色。

乘法分配律教學(xué)反思4

  乘法的分配律學(xué)生在本冊(cè)書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時(shí)候是從乘法的意義上來幫助學(xué)生理解。

  一、抓住重點(diǎn)。讓學(xué)生理解乘法分配律的意義。

  在教學(xué)時(shí),我是按照如上的步驟進(jìn)行教學(xué)的?墒窃谖乙龑(dǎo)學(xué)生把算式寫成等式的時(shí)候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的.意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場(chǎng)面一時(shí)之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>

  我不明白這是為什么,時(shí)間我給了,小組也交流了,在小組交流時(shí)我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時(shí)的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。

  二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。

  在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對(duì)乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個(gè)角度上來說,意義的理解我們班級(jí)可以做到。既然是從意義出發(fā),那么兩種方式其實(shí)都是可以的。所以在用字母來表達(dá)時(shí),我們班的同學(xué)也有了兩種的表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

  三、練習(xí)中注意乘法分配律的變式。

  乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74.一定要學(xué)生說清楚括號(hào)中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時(shí)候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們?cè)诮?jīng)過了第四題的練習(xí)時(shí)也是一樣。

  今天教學(xué)了運(yùn)算律——乘法分配律,對(duì)于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對(duì)等式的理解:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5,然后又讓學(xué)生再仿寫了幾個(gè)算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會(huì)用字母表示出這一規(guī)律,但用語言表述有困難了。

乘法分配律教學(xué)反思5

  乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn),

  乘法分配律教學(xué)反思。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用學(xué)生感興趣的買奶茶展開。這節(jié)課我力圖將教學(xué)生學(xué)會(huì)知識(shí),變?yōu)橹笇?dǎo)學(xué)生會(huì)學(xué)知識(shí)。通過讓學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識(shí)形成的過程;仡櫿麄(gè)教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個(gè)方面:

  一、引入生活問題,激趣探究

  在教學(xué)中,我為學(xué)生創(chuàng)設(shè)大量生動(dòng)、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動(dòng)?”,讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個(gè)等式。然后請(qǐng)學(xué)生觀察,這個(gè)等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個(gè)等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時(shí)利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

  二、提供學(xué)生獨(dú)立探究的.機(jī)會(huì)

  我要求學(xué)生觀察得到的兩個(gè)等式,提出“你有什么發(fā)現(xiàn)?”。此時(shí)學(xué)生對(duì)“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個(gè)類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測(cè)與驗(yàn)證,形成比較“模糊”的認(rèn)識(shí)。

  三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件

  為了讓“改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí)”不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測(cè)與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動(dòng)權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個(gè)教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

乘法分配律教學(xué)反思6

  乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運(yùn)算定律,在算術(shù)理論中又叫乘法對(duì)加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運(yùn)算。從某種程度上來說,其抽象程度要高一些,因此,對(duì)學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識(shí)要比灌輸?shù)脕淼挠浀酶巍?/p>

  因此我在一開始設(shè)計(jì)了一個(gè)購物的情境,讓學(xué)生在一個(gè)寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗(yàn)中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計(jì):

  一、讓學(xué)生從生活實(shí)例去理解乘法分配律

  一共25個(gè)小組參加植樹活動(dòng),每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個(gè)25,變?yōu)?8+6)個(gè)25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對(duì)學(xué)生理解帶來的.困難。

  通過引入解決問題讓學(xué)生得到兩個(gè)算式。先捉其意義,再突顯其表現(xiàn)的形式。

  如(4+2)×25其意義就是6個(gè)25與4×25+2×25所表示的也是4個(gè)25再加2個(gè)25也就是6個(gè)25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點(diǎn),兩個(gè)數(shù)的和乘以一個(gè)數(shù)可以寫成兩個(gè)積相加的形式,再捉住因數(shù)的特點(diǎn)進(jìn)行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會(huì)

  借助對(duì)同一實(shí)際問題的不同解決方法讓學(xué)生體會(huì)乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個(gè)算式表達(dá)的意思,也能順利地解決兩個(gè)算式相等的問題。

  二、突破乘法分配律的教學(xué)難點(diǎn)

  讓學(xué)生親歷規(guī)律探索形成過程。對(duì)于探索簡潔分配律的過程價(jià)值,絲毫不低于知識(shí)的掌握價(jià)值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計(jì)中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗(yàn)證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。

  相對(duì)于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點(diǎn)。為了突破這個(gè)教學(xué)難點(diǎn),從生活中的實(shí)際問題出發(fā),開放引入的情境,一共25個(gè)小組參加植樹活動(dòng),每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動(dòng)?

  學(xué)生主動(dòng)去設(shè)計(jì)、解決,調(diào)動(dòng)學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識(shí)經(jīng)驗(yàn)、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點(diǎn)的活動(dòng)中。

  在學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

  當(dāng)然,對(duì)乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。

乘法分配律教學(xué)反思7

  《乘法分配律》一課是四年級(jí)上冊(cè)第四單元的教學(xué)內(nèi)容,它相對(duì)于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會(huì)比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點(diǎn)定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。

  一、比賽導(dǎo)入 激發(fā)探究欲望

  課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對(duì)又快的說出結(jié)果時(shí),孩子們都很驚訝,于是我因勢(shì)利導(dǎo):剛才的比賽老師算得快,是因?yàn)槔蠋熡幸粋(gè)取勝的秘訣,它可以使計(jì)算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個(gè)個(gè)躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  二、自主探索 發(fā)現(xiàn)規(guī)律

  在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個(gè)算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個(gè)算式之后,先引導(dǎo)學(xué)生將四個(gè)算式進(jìn)行分類并說明分類的標(biāo)準(zhǔn)。通過這個(gè)環(huán)節(jié),學(xué)生對(duì)于相等的兩個(gè)算式的特征有了進(jìn)一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因?yàn)樗鼈兊臄?shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個(gè)數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個(gè)積相加,另一邊則是兩個(gè)數(shù)的和與一個(gè)數(shù)相乘。通過這個(gè)分類活動(dòng),讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。

  三、錯(cuò)因分析 防患未然

  以往的教學(xué)經(jīng)驗(yàn)告訴我,學(xué)生對(duì)于乘法分配律的運(yùn)用經(jīng)常出錯(cuò),也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?

  (1)(6+30)×7 = 7×6+7×30

  (2) 25×(4+60)= 25×4+60

  (3) 16×5×8 = 16×5+16×8

  (4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進(jìn)行分析、判斷并修正。特別是第3題,讓學(xué)生對(duì)比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個(gè)數(shù)的積,而乘法分配律是兩個(gè)數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個(gè)積相加的`形式。這樣對(duì)比,加深對(duì)乘法分配律模型的認(rèn)識(shí)和對(duì)其意義的理解。分析錯(cuò)因后,還不忘讓學(xué)生說說:“你想對(duì)小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認(rèn)真細(xì)心的習(xí)慣外,還要運(yùn)用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯(cuò)誤扼制在搖籃里。

  不足之處:雖然學(xué)生對(duì)于乘法分配律的理解比較到位,較好地達(dá)成了教學(xué)目標(biāo),但如能進(jìn)行適時(shí)拓展,讓學(xué)生通過“兩個(gè)數(shù)的和與一個(gè)數(shù)相乘來聯(lián)想到兩個(gè)數(shù)的差與一個(gè)數(shù)相乘,兩個(gè)數(shù)的和除以一個(gè)數(shù)及兩個(gè)數(shù)的差除以一個(gè)數(shù)是否都可以應(yīng)用乘法分配律這個(gè)數(shù)學(xué)模型?”會(huì)使課堂更豐滿,更有深度。

乘法分配律教學(xué)反思8

  乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生在這幾個(gè)定律中的難點(diǎn)。

  新課標(biāo)強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和應(yīng)用的過程,進(jìn)而使學(xué)生獲得對(duì)數(shù)學(xué)理解的`同時(shí),在思維能力方面得到進(jìn)步和發(fā)展。

  初步的教學(xué)設(shè)想是這樣的:首先舉一些學(xué)生身邊的例題求長方形的周長,然后讓學(xué)生觀察這兩組算式有什么樣的關(guān)系。學(xué)生通過計(jì)算發(fā)現(xiàn)每組兩個(gè)算式相等。在此基礎(chǔ)上讓學(xué)生完成長方形周長計(jì)算這樣的例子并在黑板上列出,再出示例題,讓學(xué)生分組討論并解答。然后分組討論這些算式有什么規(guī)律,引導(dǎo)學(xué)生發(fā)現(xiàn)乘法分配律并總結(jié)出這一規(guī)律。最后做一些練習(xí)鞏固、拓展對(duì)乘法分配律的認(rèn)識(shí)。

  在教學(xué)之后發(fā)現(xiàn)有一些問題。孩子對(duì)于乘法分配律的作用及意義沒有理解透徹,應(yīng)用不夠靈活,而且在口頭上感覺很好,但是落筆后就發(fā)現(xiàn)很多類型題孩子根本就不會(huì)做,而且錯(cuò)誤很多。所以對(duì)本節(jié)課教學(xué)目標(biāo)進(jìn)行了一些調(diào)整。讓一名學(xué)生在黑板上板演,其他學(xué)生在本子上做,最后總結(jié)不同方法,看哪種方法簡便。進(jìn)一步體會(huì)乘法分配律的作用。

  教學(xué)目標(biāo)定位是

  (1)通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。

 。2)初步感受乘法分配律能使一些計(jì)算簡便。

 。3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。

乘法分配律教學(xué)反思9

  今天靜下心來觀看了省賽課中葛老師執(zhí)教的《乘法分配律》一課。她巧妙引領(lǐng)。葛老師非常自然的借助孩子們喜愛的農(nóng)場(chǎng)游戲,引入問題“誰能幫老師算算一共有多少菜?你能列出綜合算式嗎?先求什么,后求什么?”一方面教師問題的指向性簡練明確可以引導(dǎo)學(xué)生列出綜合算式,另一方面借助情景能有效的幫助學(xué)生理解算式的道理,明確意義。更為巧妙的是此情景內(nèi)容豐富可以列出不同的算式:

  2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4為后面的“觀察、分類和探究”做好鋪墊。

  大膽放手。在第一個(gè)“求菜”的情境中,是在教師的引導(dǎo)下學(xué)生順利完成了學(xué)習(xí)的過程,然而后面的“求花”和“求果樹”就是放手讓學(xué)生自己探究了,很自然的激發(fā)了學(xué)生的探究欲望,分別列出了兩組算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。

  這樣在學(xué)生喜愛的農(nóng)場(chǎng)情景中,巧妙的'引發(fā)出六道算式,為進(jìn)一步的觀察和探究埋下了伏筆。

  得出6個(gè)算式后,葛老師再次拋出問題:“這六個(gè)算式讓你分分類,你打算分幾類?理由是什么?”然后葛老師又引導(dǎo)學(xué)生同桌先討論,然后集體匯報(bào),于無形中讓學(xué)生經(jīng)歷了各個(gè)層面的探究活動(dòng)。讓學(xué)生觀察——猜想——舉例驗(yàn)證——,和從“特例”進(jìn)行驗(yàn)證等一系列的活動(dòng),最后歸納出一普遍性的規(guī)律。

  當(dāng)結(jié)論得出后,葛老師并不是將字母表示進(jìn)行簡單的灌輸,而是巧妙的借助點(diǎn)子圖將用字母表示乘法分配律的過程變?yōu)橐蛐瓒O(shè),從而呼之欲出。最后教師還通過乘法的意義加深學(xué)生對(duì)乘法分配律的理解,并且教師還通過兩組以前學(xué)過的兩位數(shù)乘一位數(shù)和兩位數(shù)乘兩位數(shù)來打通乘法分配律與以前知識(shí)的聯(lián)系。

  總之,本節(jié)課在學(xué)習(xí)方式上自主學(xué)習(xí)與合作探究并存,在思維發(fā)展上,教師引導(dǎo)與放手相結(jié)合,整個(gè)學(xué)習(xí)過程,因需而設(shè),充滿了探究。

乘法分配律教學(xué)反思10

  教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對(duì)乘法結(jié)合律與乘法分配律極容易混淆。針對(duì)這種情況,在教學(xué)中應(yīng)該注意些什么呢?

  1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時(shí)注重其內(nèi)涵。

  教學(xué)中通過解決“一共貼了多少塊瓷磚?”這一問題,結(jié)合具體的生活情景,得到了(6+4)×9=6×9+4×9這一結(jié)果。這時(shí)老師往往注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即兩數(shù)的和乘一個(gè)數(shù)=兩個(gè)積的和。缺乏從乘法意義角度的理解。這時(shí)教師可提問“為什么兩個(gè)算式是相等的?”這里不僅要從解題思路的角度理解(6+4)×9=6×9+4×9是相等的,還要從乘法的意義的角度理解,即左邊表示10個(gè)9,右邊也表示10個(gè)9,所以(6+4)×9=6×9+4×9。

  2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對(duì)比練習(xí)。

  乘法結(jié)合律的特征是幾個(gè)數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯(cuò)誤。為了學(xué)生更好地掌握可以多進(jìn)行一些對(duì)比練習(xí)。如:進(jìn)行題組對(duì)比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算是個(gè)有什么特征和區(qū)別?符合什么運(yùn)算定律的特征?應(yīng)用運(yùn)算定律可以使計(jì)算簡便嗎?為什么要這樣算?

  3、 讓學(xué)生進(jìn)行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對(duì)乘法結(jié)合律與乘法分配律的理解。

  如:計(jì)算125×88;101×89你能用幾種方法? 125×88 ①豎式計(jì)算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①豎式計(jì)算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對(duì)不同的解題方法,引導(dǎo)學(xué)生進(jìn)行對(duì)比分析,什么時(shí)候用乘法結(jié)合律簡便,什么時(shí)候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進(jìn)行間算的`條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對(duì)有兩種運(yùn)算的算式。力爭達(dá)到“用簡便算法進(jìn)行計(jì)算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點(diǎn),靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>

  4、多練。

  針對(duì)典型題目多次進(jìn)行練習(xí)。練習(xí)時(shí)注意練習(xí)量和練習(xí)時(shí)間的安排。剛開始可以天天練,過段時(shí)間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對(duì)于比較特殊的題目可間斷性練習(xí),對(duì)優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

乘法分配律教學(xué)反思11

  乘法的分配律學(xué)生在本冊(cè)書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時(shí)候是從乘法的意義上來幫助學(xué)生理解。

  一、抓住重點(diǎn)。讓學(xué)生理解乘法分配律的意義。

  教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運(yùn)算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對(duì)簡潔分配律的認(rèn)識(shí)由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點(diǎn)和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。

  在教學(xué)時(shí),我是按照如上的步驟進(jìn)行教學(xué)的?墒窃谖乙龑(dǎo)學(xué)生把算式寫成等式的時(shí)候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場(chǎng)面一時(shí)之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>

  我不明白這是為什么,時(shí)間我給了,小組也交流了,在小組交流時(shí)我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時(shí)的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。

  總之,這個(gè)關(guān)鍵今天并沒有完成好。

  二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。

  在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對(duì)乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個(gè)角度上來說,意義的理解我們班級(jí)可以做到。既然是從意義出發(fā),那么兩種方式其實(shí)都是可以的。所以在用字母來表達(dá)時(shí),我們班的同學(xué)也有了兩種的表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個(gè)星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。

  三、練習(xí)中注意乘法分配律的變式。

  乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號(hào)中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時(shí)候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們?cè)诮?jīng)過了第四題的練習(xí)時(shí)也是一樣。

  今天教學(xué)了運(yùn)算律——乘法分配律,對(duì)于例題的解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對(duì)等式的.理解:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5,然后又讓學(xué)生再仿寫了幾個(gè)算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會(huì)用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個(gè)學(xué)生把第3小題填錯(cuò),其實(shí)包括后面的練習(xí)中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5的理解方法的限制而沒學(xué)會(huì)用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。

  想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運(yùn)用乘法分配律變形成74x(21+1),學(xué)生理解后我補(bǔ)充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時(shí)補(bǔ)充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時(shí),學(xué)生多習(xí)慣列式48x3+48x2來計(jì)算,卻不能靈活運(yùn)用所學(xué)知識(shí)列成(3+2)x48來計(jì)算,雖然運(yùn)用乘法分配律進(jìn)行簡便計(jì)算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時(shí)只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點(diǎn)。

乘法分配律教學(xué)反思12

  關(guān)于乘法分配律早在上學(xué)期和本冊(cè)教材的前幾個(gè)單元的練習(xí)題中就有所滲透,雖然在當(dāng)時(shí)沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進(jìn)行了感知,以及初步體會(huì)了它可以使計(jì)算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進(jìn)行對(duì)比,談一談自己的感受:

  首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認(rèn)識(shí)提升了,從解決實(shí)際問題的角度進(jìn)一步感受了乘法分配律。而第4題通過計(jì)算比較,突現(xiàn)了乘法分配律可以使計(jì)算簡便,體現(xiàn)了應(yīng)用價(jià)值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時(shí)間比較倉促。

  其次,我在學(xué)生解決完例題的問題后,還讓學(xué)生提了減法的問題,這樣做的.目的是讓學(xué)生初步感受對(duì)于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴(kuò)展了學(xué)生的知識(shí)面,同時(shí)又為明天學(xué)習(xí)簡便運(yùn)算鋪墊。

  最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時(shí),可以指導(dǎo)學(xué)生從數(shù)和運(yùn)算符號(hào)兩個(gè)角度觀察,學(xué)生得出結(jié)論后,其實(shí)已經(jīng)感知到了算式的特點(diǎn),然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。

  不足的是,學(xué)生很難用自己的語言表達(dá)乘法分配律的含義,小組交流時(shí),有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。

  《乘法分配律》教學(xué)反思3

  乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識(shí)。

  具體是這樣設(shè)計(jì)的:先創(chuàng)設(shè)佳樂超市的情景調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,通過買“3套運(yùn)動(dòng)服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實(shí)能夠體會(huì)到兩個(gè)不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動(dòng)自己獲取的,學(xué)生對(duì)于它們感到熟悉和親切,用他們作為繼續(xù)研究的對(duì)象,能夠調(diào)動(dòng)學(xué)生的參與意識(shí)。)

  第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測(cè):是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。這里既培養(yǎng)了學(xué)生的猜測(cè)能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測(cè)的能力。

  第三步:應(yīng)用規(guī)律,解決實(shí)際問題。通過對(duì)于實(shí)際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識(shí),又是吸收內(nèi)化知識(shí)的階段,同時(shí)還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。

乘法分配律教學(xué)反思13

  這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時(shí)學(xué)生對(duì)于乘法分配律的意義已經(jīng)有了初步的理解,對(duì)于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識(shí),能初步利用乘法分配律進(jìn)行簡便計(jì)算。本課內(nèi)容的教學(xué)重點(diǎn)是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計(jì)算。

  成功之處:

  1、課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點(diǎn),加深對(duì)乘法分配律意義的理解。

  2、分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項(xiàng)練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);

  第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個(gè)數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個(gè)腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。

  不足之處:

  1、由于分類型講解練習(xí),導(dǎo)致時(shí)間分配不足,個(gè)別題型沒有足夠的時(shí)間進(jìn)行練習(xí)。

  2、學(xué)生的注意力集中不夠,導(dǎo)致個(gè)別學(xué)生對(duì)某一類型的題目沒有掌握。

  再教設(shè)計(jì):

  1、加強(qiáng)小組合作的.學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時(shí)間和空間,發(fā)揮學(xué)生主體作用。

  2、抓住易出錯(cuò)類型題,重點(diǎn)講解,重點(diǎn)訓(xùn)練。

乘法分配律教學(xué)反思14

  昨天,我與全班同學(xué)一起進(jìn)行了乘法分配律探討學(xué)習(xí),從作業(yè)的反饋中,一部分同學(xué)的作業(yè)相當(dāng)完美,對(duì)公式的應(yīng)用,變形拓展都能應(yīng)用自如;我也發(fā)現(xiàn)部分學(xué)生的正確率很低,特別乘法分配律的“分別”相乘理解得不清楚,沒有把每個(gè)加數(shù)與因數(shù)相乘,造成作業(yè)正確率低。針對(duì)這種情況,在教學(xué)中應(yīng)該注意些什么,我積極思考,與同學(xué)進(jìn)行交流,找出他們思維中出錯(cuò)的原因,正確進(jìn)行補(bǔ)救,以達(dá)到對(duì)乘法分配律的正確運(yùn)用,靈活應(yīng)用。

  一、乘法分配律的教學(xué)時(shí),注重從例題的解答中引導(dǎo)抽象出乘法分配律。強(qiáng)調(diào)注重它的外形結(jié)構(gòu)特點(diǎn),也要同時(shí)注重其內(nèi)涵。

  教材中植樹情境圖給出了以下的條件:一共有25個(gè)小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹,“一共有多少名同學(xué)參加植樹活動(dòng)?”這一問題,得到了如下兩種解答方法。

  方法一:①每組有多少名同學(xué)? 2+4=6人

  ②25組共有多少名同學(xué)參加植樹? 6×25=150人

  綜合列式:(2+4)×25

  =6×25

  =150(個(gè))

  方法二:①挖坑種樹有多少人? 4×25=100人

 、谔疂菜挠卸嗌偃? 2×25=50人

 、垡还灿卸嗌偃? 100+50=150人

  綜合列式:4×25+2×25

  =100+50

  =150(人)

  同學(xué)們很容易得出(4+2)×25和4×25+2×25這兩個(gè)算式結(jié)果相等。這時(shí)同學(xué)們往往注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即兩數(shù)的和乘一個(gè)數(shù)=兩個(gè)數(shù)的積的和,而忽視從乘法意義角度去理解。這時(shí)教師可提問“為什么兩個(gè)算式是相等的?”這里不僅要從解題思路的角度理解(4+2)×25=4×25+2×25是相等的,還要從乘法的意義的角度理解,即左邊表示6個(gè)25,右邊表示4個(gè)25加2個(gè)25,等于6個(gè)25,所以,(4+2)×25=4×25+2×25

  二、注意乘法分配律的特點(diǎn),多進(jìn)行練習(xí)。

  乘法分配律特征是兩數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的.和。在練習(xí)時(shí)學(xué)生特別容易出現(xiàn)錯(cuò)誤。把算式做成(80+8)×125

  =80×125+80

  =10000+80

  =10080

  為了學(xué)生更好地掌握可以讓學(xué)生劃出分別相乘的箭頭如:

  提醒同學(xué)把箭頭畫出來,把兩個(gè)加數(shù)“分別”與括號(hào)外的因數(shù)相乘,這樣盡量減少一些把一個(gè)加數(shù)乘掉的同學(xué)。

  三、多進(jìn)行分組練習(xí)

  一組:15×(8+4) (80+8)×125 (40+4)×25

  47×(100+1) 78×(200+2) (100-1)×125

  在練習(xí)上述題后,讓學(xué)生觀察括號(hào)里的數(shù)如果不運(yùn)用乘法分配律會(huì)變成怎樣的一個(gè)算式:

  15×12 88×125 44×25

  47×101 78×202 99×125

  這些算式我們?nèi)绾螌⒁粋(gè)因數(shù)拆成兩個(gè)數(shù)相加的形式,這兩個(gè)加數(shù)盡量要拆成整十整百或是與外面的數(shù)相乘能得整十整百的數(shù)。

  在讓學(xué)生在對(duì)乘法分配律基本公式的運(yùn)用掌握較好之后,再進(jìn)行第二組乘法分配律反方向運(yùn)用的形式。

乘法分配律教學(xué)反思15

  教學(xué)過程:

  一、創(chuàng)境

  1、直接出示:師口述:張阿姨買5件夾克和5條褲子,一共要付多少元?你們能用兩種方法解答嗎?(獨(dú)立)指名板演

  2、組織交流:你是怎么想的?(先求什么,再求什么)

  比較:最后結(jié)果,你發(fā)現(xiàn)什么?

  說明:這樣的兩個(gè)算式可寫成一個(gè)等式

  3、出示課題運(yùn)算律

  今天,我們就來仔細(xì)研究這兩個(gè)算式,找出其中隱藏的秘密。

  二、探究:

  1、仔細(xì)觀察此算式,比較等號(hào)的兩邊有什么聯(lián)系?

  2、明確:左邊先算什么?再算什么?右邊先算什么?再算什么?

  3、根據(jù)觀察,你有什么猜想?是不是所有這樣的兩道算式間都有這樣聯(lián)系呢?

  列舉指名口答算式齊計(jì)算感受結(jié)果相等

  4、發(fā)現(xiàn)規(guī)律

  5、出示公式

  三、應(yīng)用深化

  1、完成1,填一填

  2、完成2

  3、完成4

  老師出一道算式,請(qǐng)同學(xué)們根據(jù)乘法分配律,說出算式,比比誰反應(yīng)最快。

  4、完成3:你能用兩種不同方法計(jì)算長方形菜地周長嗎?

  5、完成5

  四、回顧

  通過今天的學(xué)習(xí)你有什么收獲?

  五、作業(yè)

  對(duì)自主探究與有效生成幾點(diǎn)嘗試

  ——《乘法分配律》教學(xué)案例與反思

  一、回顧

  本課對(duì)乘法分配律的教學(xué),結(jié)合具體的問題情境,幫助學(xué)生理解兩種算法之間的聯(lián)系與區(qū)別,即先算出一套的和再乘5套,與先分別算5件及服和5條褲子的總價(jià)再相加,它們的結(jié)果相等;再通過例舉驗(yàn)證,觀察比較,歸納出乘法分配律;最后進(jìn)行多層次的練習(xí),進(jìn)一步提升孩子們對(duì)乘法分配律理解與應(yīng)用。

  二、反思

  新課程如春風(fēng)化雨,走進(jìn)了師生的生活。倡導(dǎo)自主探究,關(guān)注有效生成,成為新課程改革永恒的主題。在追求有效的教學(xué)中我作出了以下幾點(diǎn)的嘗試:

  1、從具體的問題情境出發(fā),有利于學(xué)生的自主探索

  對(duì)于5套運(yùn)動(dòng)服一共多少元,這樣的問題對(duì)于大多數(shù)學(xué)生來說是駕輕就熟的。結(jié)合熟悉的問題情境,便于學(xué)生理解兩種算法間的聯(lián)系與區(qū)別,

  為后敘對(duì)乘法分配律的成功探究理好伏筆。最近發(fā)展區(qū)理論告訴我們,只有找準(zhǔn)了學(xué)生的知識(shí)起點(diǎn),才能有效的教學(xué),熟悉的問題情境面向全體學(xué)生,只有全面參與的探究,才是真正的自主有效的探究。

  2、鼓勵(lì)學(xué)生大膽猜想,在驗(yàn)證過程中形成共識(shí)。

  數(shù)學(xué)的猜想是在一系列的.實(shí)驗(yàn)、觀察、歸納、類比的基礎(chǔ)上獲得的,數(shù)學(xué)活動(dòng)脫離了猜想就會(huì)顯得沒有意義。本課教學(xué)乘法分配律的探究過程分為幾個(gè)層次:(1)啟發(fā)猜想。在解決實(shí)際問題的基礎(chǔ)上通過比較,引導(dǎo)學(xué)生的發(fā)散性思維,提出猜想。在具體的問題情境中,讓學(xué)生插上想象的翅膀,激起創(chuàng)新的火花。(2)例舉驗(yàn)證。讓學(xué)生圍繞猜想,以小組探究為主要形式,以獨(dú)立思考例舉算式與合作學(xué)習(xí)有機(jī)結(jié)合,算出得數(shù)發(fā)現(xiàn)兩種算式結(jié)果相等,在相互交流中,形成對(duì)乘法分配律的共識(shí)。在交流、合作中,使學(xué)生真正成為學(xué)習(xí)的主人。

  3、設(shè)計(jì)多層次練習(xí),在層層深入中啟迪學(xué)生的智慧

  在形成對(duì)乘法分配律的認(rèn)識(shí)后,分幾個(gè)層次運(yùn)用知識(shí)訓(xùn)練,首先是基礎(chǔ)訓(xùn)練,書本55頁第1、2、3題練習(xí)從正的兩個(gè)角度進(jìn)行,使學(xué)生明確乘法分配律是互逆的。從而達(dá)到靈活運(yùn)用真正理解并掌握的目標(biāo)。其次變式練習(xí),我將書本55頁第4題組練習(xí)設(shè)計(jì)成游戲的形式呈現(xiàn),讓學(xué)生在國松的氛圍中,發(fā)現(xiàn)用乘法分配律可使計(jì)算方便。最后拓展延伸啟迪智慧。練習(xí)中再次結(jié)合具體的問題情境,通過觀察與比較體會(huì)到乘法分配律不僅適用于一個(gè)數(shù)兩個(gè)數(shù)的和,也適用于一個(gè)數(shù)乘兩個(gè)數(shù)的差。在這層層深入的練習(xí)中面向了全體學(xué)生,使每個(gè)孩子有所進(jìn)步,有所發(fā)現(xiàn),有所啟迪,有所收獲。

  新課改的腳步在前行,新課扆的理念在深入。作為教師只有不斷內(nèi)化新課程理念,才能使自己的教學(xué)面向全體,促使學(xué)生真正的自主探究,成為學(xué)習(xí)的主人。

【乘法分配律教學(xué)反思】相關(guān)文章:

《乘法分配律》教學(xué)反思02-07

乘法分配律教學(xué)反思07-03

《乘法分配律》教學(xué)反思(15篇)03-14

《乘法分配律》教學(xué)反思精選15篇03-26

《乘法分配律》教學(xué)反思(精選20篇)04-11

《乘法分配律》教學(xué)反思集錦15篇03-17

《乘法分配律》教學(xué)反思(通用25篇)02-09

《乘法分配律》教學(xué)反思(通用20篇)11-23

《乘法分配律》教學(xué)反思匯編15篇03-30