- 最大公因數(shù)教學反思 推薦度:
- 《最大公因數(shù)》教學反思 推薦度:
- 相關(guān)推薦
《最大公因數(shù)》教學反思
作為一位優(yōu)秀的老師,課堂教學是重要的工作之一,通過教學反思可以有效提升自己的教學能力,那么問題來了,教學反思應(yīng)該怎么寫?以下是小編為大家收集的《最大公因數(shù)》教學反思,歡迎閱讀與收藏。
《最大公因數(shù)》教學反思1
本課是在學生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學習約分和通分以及分數(shù)四則計算的基礎(chǔ)。
第一節(jié)課,根據(jù)教材是以鋪地磚的生活實際作為切入點,要鋪整分米數(shù)的地磚而且要求要整數(shù)塊,引入了求兩個數(shù)的公因數(shù)的必要性。教材主要的教學方法是先分別求出兩個數(shù)的因數(shù),并按照從大到小的`順序排列出來,從而找出兩個數(shù)的公有因數(shù),稱為這兩個數(shù)的公因數(shù),其中最大的數(shù)就是這兩個數(shù)的最大公因數(shù)。通過例1的教學后,我引導學生總結(jié)出求兩數(shù)的公因數(shù)以及最大公因數(shù)的方法。練習時發(fā)現(xiàn)部分學生還是容易在找一個數(shù)的因數(shù)的有疏漏,導致求出來的公因數(shù)和最大公因數(shù)出錯。
第二節(jié)課,我引入了求最大公因數(shù)的另一種方法,分解質(zhì)因數(shù)法,介紹用短除法求兩個數(shù)的最大公因數(shù)。這種方法學生掌握起來比較容易,但也發(fā)現(xiàn)部分學生沒有除盡,最后的商不是互質(zhì)數(shù),導致找錯最大公因數(shù)。
不過相對于第一鐘方法,第二種方法在書寫上更簡便,學生解題時還是比較容易理解,寫起來也比較簡潔,大部分學生在求幾個數(shù)的最大公因數(shù)時還會選擇第二種方法。當然,我還是鼓勵學生選擇自己喜歡的方法,關(guān)鍵是能理解,懂應(yīng)用。
《最大公因數(shù)》教學反思2
教學內(nèi)容:第26~28頁的例3、例4、“練一練”、“練習五”的第1~5題。
目標預設(shè):
1、理解公因數(shù)的含義,掌握求兩個公因數(shù)和最大公因數(shù)的方法。
2、經(jīng)歷“猜測——驗證”的數(shù)學學習過程,感受科學探究的一般方法,培養(yǎng)抽象思維能力,積累數(shù)學活動經(jīng)驗。
3、感受數(shù)學的奇妙,培養(yǎng)對數(shù)學的積極情感。
教學重點和難點:理解公因數(shù)的含義,掌握求兩個數(shù)最大公因數(shù)的方法。
課程實施:
一、自主構(gòu)建公因數(shù)意義
1、出示邊長6厘米、邊長4厘米的小正方形個若干以及一個長18厘米、寬12厘米的長方形。
猜一猜:你覺得哪一種正方形可以將這個正方形鋪滿。
2、組織學生同桌合作,擺放小正方形,
教師要幫助學有困難的小組完成活動任務(wù)。
3、交流:邊長6厘米的正方形紙可以正好鋪滿這個長方形。
為什么邊長6厘米的正方形正好鋪滿這個長方形?
結(jié)合剛才的操作活動體驗,學生明白:因為12÷6=2(豎排放2行),18÷6=3(橫排放3列),也就是6既是12的因數(shù),也是18的因數(shù),所以可以正好擺滿。
4、討論:還有哪些邊長是整厘米的正方形紙片也能正好鋪滿這個長方形?簡單地解釋自己推測的理由。
5、只要邊長的厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿這個長方形嗎?
6、提問:4是12和18的公因數(shù)嗎?
7、通過剛才的學習,你有什么話想說嗎?
二、獨立探索找公因數(shù)的方法。
1、8和12的公因數(shù)有哪些?最大公因數(shù)是幾?
放手讓學生自己探索解決問題的方法。
2、交流:學生出現(xiàn)的方法:
。1)、分別寫出8和12的因數(shù),再找一找他們的公因數(shù);
(2)、先找8的因數(shù),再從8的因數(shù)中找12的因數(shù);
……
交流時結(jié)合自己的方法說說這樣找的理由,
3、“集合圈”
我們同樣也可以用集合圈表示8和12的公因數(shù)。
出示集合圈,先讓學生自己填寫,再說說每一部分表示的含義。
4、觀察比較,感受公因數(shù)的有限性,
公因數(shù)的集合圈與公倍數(shù)有什么不同的地方?為什么公因數(shù)集合圈中不需要省略號?引導學生從“因數(shù)的有限性”推想出“兩個數(shù)的公因數(shù)的個數(shù)是有限的”。
5、練一練
先讓學生根據(jù)要求完成。通過交流,進一步理解找兩個數(shù)公因數(shù)和最大公因數(shù)的方法,感受兩者的聯(lián)系與區(qū)別,
三.促進知識向技能的轉(zhuǎn)化
1、“練習五”第1題
讓學生獨立完成,進一步理解集合圈的表示方法,深化對求兩個數(shù)最大公因數(shù)的方法的認識。
2、“練習五”第4題
、畔茸寣W生自主判斷第一組數(shù),然后交流各自的方法,比較得出“利用2.3.5倍數(shù)的特征”進行判斷,可以提高正確率。
⑵出示其他幾組讓學生選擇合理的方法進行判斷,同時提醒兩個數(shù)的公因數(shù)可以有2.3.5中的多個,為后面學習月份積累策略。
3、“練習五”第5題
要啟發(fā)學生用不同的方法找出每組數(shù)的最大公因數(shù),提倡靈活運用各種策略快速解題,
四、通過本節(jié)課的學習,你有哪些收獲?
五.作業(yè)布置
“練習五”第2.3題
課后反思:
這部分內(nèi)容的結(jié)構(gòu)與“公倍數(shù)和最小公倍數(shù)”基本相同,結(jié)合具體的情境,引導學生通過觀察、操作、分析、比較、抽象和概括等活動,探索并理解公因數(shù)、最大公因數(shù)的含義,掌握求兩個數(shù)的最大公因數(shù)的方法。
1、我讓學生依托動手操作,加強對比觀察,溝通新舊知識的聯(lián)系,優(yōu)化概念引進的過程。在教學例3時,我分四步組織學生
的活動。第一步,讓學生“分別用邊長6厘米和4厘米的正方形紙片鋪長18厘米、寬12厘米的長方形”,鋪前先思考:邊長是多少的正方形可以鋪滿這個長方形?通過操作,學生都知道邊長6厘米的正方形可以鋪滿長18厘米、寬12厘米的長方形。引導學生具體感知公因數(shù)的含義。第二步,組織討論“還有哪些邊長是整厘米數(shù)的正方形紙片也能正好鋪滿這個長方形”,通過思考,學生明白:“只要邊長的.厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿”這個長方形。第三步,可以先讓學生說一說1、2、3和6的共同特征,再告訴學生1、2、3和6的共同特征,再告訴學生“1、2、3和6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)。第四步,讓學生說一說4為什么不是12和18的公因數(shù),使學生加深對公因數(shù)含義的理解,知道4是12的因數(shù),但不是18的因數(shù),所以4就不是12和18的公因數(shù)。通過正、反兩方面的比較,優(yōu)化概念的形成。
2、著眼于問題的解決,鼓勵學生自主探索,逐步形成概念結(jié)構(gòu)。教學例4是,我讓學生先獨立思考,用自己的方法找出8和12的公因數(shù)和最大的公因數(shù)。再通過交流,使學生在相互啟發(fā)的過程中進一步打開思路,明確方法。由于學生已經(jīng)積累了較為豐富的求兩個數(shù)的最小公倍數(shù)的方法,因而這里的重點是讓學生在自主探索的基礎(chǔ)上合乎邏輯地表達自己的思考過程,并體會不同方法的內(nèi)在一致性。這時,我適時引導學生建立概念結(jié)構(gòu):因數(shù)——公因數(shù)——最大公因數(shù),并且辨析這些概念的聯(lián)系與區(qū)別。此外,考慮到學生也已經(jīng)初步認識了用集合圖表示兩個相交的集合圈,所以我讓學生根據(jù)對有關(guān)概念的理解,獨立把8和12的因數(shù)分別填在集合圖中的合適部分,然后再看圖說說各自的想法,說說每一個區(qū)域內(nèi)的數(shù)分別表示什么,把靜態(tài)的集合圖轉(zhuǎn)化成動態(tài)的探索對象,讓學生加深對集合圖的理解,也使集合思想的滲透落到實處。
3、練習的重點是讓學生通過操作和填空,進一步理解求公因數(shù)和最大公因數(shù)的方法。讓學生在解決問題的過程中提煉解題策略,優(yōu)化概念應(yīng)用的過程。
《最大公因數(shù)》教學反思3
《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學生學習了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進行的,它是學習除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導學生解決具體問題的過程中,切實理解算理,掌握計算方法。
1、聯(lián)系舊知,激發(fā)興趣
本節(jié)課我有意識的在一開始設(shè)計了搶答環(huán)節(jié),讓學生判斷大屏幕上幾道題目的商的位數(shù),進而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學習。從效果上看,學生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達到了預期的目的。
2、放手學生,設(shè)置大問題
本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學生最后也弄明白了該如何分小棒,但學生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計中,我會注意放手,設(shè)置大問題。比如:“請同學們看著大屏幕上的'小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下!弊寣W生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領(lǐng)點撥,但這和我之前的設(shè)計感覺就不一樣了,后者更能體現(xiàn)學生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實踐。
3、設(shè)計新穎的練習題,增多練習內(nèi)容。
計算教學,單純的讓學生計算勢必會使學生產(chǎn)生厭倦。我聯(lián)系學生實際和生活實際,設(shè)計出多種多樣的練習題,比如:計算之后讓學生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環(huán)節(jié),將思路滲透到日常教學中,或在最后讓學生根據(jù)所學再來一組比賽等,結(jié)合學生不同的計算階段提出不同的要求和練習形式,使單調(diào)枯燥的計算練習變得生動有趣,達到了較好的教學效果。
我將以本次講課為契機,在今后的教學中應(yīng)用本次活動學到的知識,加以實踐,不斷提高自身的教學水平。
《最大公因數(shù)》教學反思4
一、分析基礎(chǔ)知識,準確制定教學目標。
本節(jié)課是在學生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學習約分和分數(shù)四則計算的基礎(chǔ)。我根據(jù)教材的編寫特點準確地制定了教學目標,即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個數(shù)都有公因數(shù);能夠采用枚舉法找到兩個數(shù)的最大公因數(shù)。通過動手、觀察、思考等教學活動,從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進一步探究明確公因數(shù)及最大公因數(shù)的含義。
二、在現(xiàn)實的情境中教學概念,借助直觀操作活動,經(jīng)歷概念的形成過程。
以往教學公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的`,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導學生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導學生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關(guān)系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標出的這些數(shù)據(jù)是左面這兩個數(shù)的公因數(shù),找到這里面最大的一個公因數(shù),完成由形象到抽象的過程,把感性認識提升為理性認識。
三、把握內(nèi)涵外延,準確理解概念的含義。
概念的內(nèi)涵是指這個概念的所反映的一切對象的共同的本質(zhì)屬性。公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學習公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學中,我首先讓學生在練習本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學生進一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。
概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的含義。在用集合圖法來表示12和16的公因數(shù)的時候,找到填寫錯誤的學生的例子,提示學生注意:并集里填寫的是兩個數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個數(shù)的都有的因數(shù),從而進一步明確公因數(shù)的概念。
四、教學中的不足:
教師的提問有時指向性不是很強,學生不能很快地明白老師的意圖,影響了學生的思考,須進一步提高。在教學“兩個長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學生有些困難,我應(yīng)該讓學生動手在本上畫一畫,幫助學生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。
自己要學的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學水平,更好地為學生服務(wù)。
《最大公因數(shù)》教學反思5
《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學習面積概念時積累了“密鋪”的活動經(jīng)驗開展教學的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學,其教學重、難點我認為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學重點、突破教學難點,結(jié)合我們本學期的教研主題“如何設(shè)計有效的教學活動,達成教學目標”,我主要從以下幾方面入手來嘗試教學:
一、重視活動體驗,讓學生經(jīng)歷數(shù)學概念的形成過程。
第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。
第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。
第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學生繼續(xù)操作驗證。這時學生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。
然后,發(fā)揮教師的主導作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導學生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。
通過創(chuàng)設(shè)以上教學活動,讓學生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。
二、借助幾何直觀,增進學生對概念意義的理解。
通過上面的操作體驗和思考認知,學生認識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑W生進一步地思考。這時學生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個。”根據(jù)學生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的.關(guān)系,增進了學生對概念意義的理解。
三、通過實際問題,溝通數(shù)學概念與現(xiàn)實世界的聯(lián)系。
在學生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導學生改編成一個用公因數(shù)來解決的問題,學生首先想到了
少需要兩個數(shù)據(jù),于是有的學生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學生思考的過程,既是在進一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學生的數(shù)學抽象能力。
一節(jié)課下來,我發(fā)現(xiàn)學生是最棒的!在不斷地實踐探索中,他們的認識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。
當然,仔細琢磨,這節(jié)課還有很多可圈可點之處,如:
1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。
2、因為操作感知時間較長,在本節(jié)課的第二個知識目標——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。
帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導、同行們的指點與批評!
《最大公因數(shù)》教學反思6
本節(jié)課,我從學生已有的知識和經(jīng)驗出發(fā),精心設(shè)計一個童話情境,激發(fā)了學生的學習欲望。先讓學生動手操作、自學討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關(guān)系。然后用問題的形式,通過復習16和12的'因數(shù),讓學生再找兩個數(shù)的因數(shù)、找兩個數(shù)的公有的因數(shù)、找兩個數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導學生思考1、2、4這些數(shù)和16、12有什么關(guān)系,同時揭示公因數(shù)和最大公因數(shù)的概念。
總之,我在教學的過程中,不但復習鞏固舊知,讓學生在不知不覺中學會了新知。而且還讓學生帶著自己的數(shù)學現(xiàn)實參與數(shù)學課堂,不斷地利用原有的經(jīng)驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學生參與探索,重視引發(fā)學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發(fā)現(xiàn),對于有困難的學生,我從方法上作進一步指導,小組長幫助,生生互幫等。以“學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者為主。培養(yǎng)了學生動手操作的能力,使他們在愉快的學習氛圍中學會了本節(jié)課的內(nèi)容。
《最大公因數(shù)》教學反思7
學生的學習過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的。
1、小組討論合作學習研究多了,獨立思考就有所忽視。從數(shù)學學習的本質(zhì)來說,獨立思考是主流,合作交流應(yīng)在獨立思考的基礎(chǔ)上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設(shè)計時,求兩數(shù)的最大公約數(shù)。先讓學生課前獨立探究方法,在學生有充分獨立思考的基礎(chǔ)上再交流評價。才真正實現(xiàn)每個學生潛質(zhì)的開發(fā)和學生之間真正的差異互補。
2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學中應(yīng)放下架子,蹲下身子來傾聽學生,相信每個學生都會有精彩的表現(xiàn)。正如陶行知所說的:“學生能做許多你不能做的事,也能做許多你認為他不能做的事。”不要小看了孩子,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的'光芒。如本課時在開放題的解答過程中,學生能在一些簡單的嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。
3、當數(shù)學問題情境作用于思考者時就有可能展開數(shù)學思維活動,可以說,問題的設(shè)計和問題的情境的創(chuàng)設(shè)是促進數(shù)學思考的客觀性因素。讓學生在問題情境中層層推出數(shù)學思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學,錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學習的學生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。
兩個數(shù)的最大公約數(shù)的教學反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是
學習的成功。成功所帶來的喜悅總是進一步學習的最大動力,自主探究的課堂,為個性不同的學生的發(fā)展留下了必要的空間,讓他們都有機會表達自己的思想,以自己獨特的方式去學習數(shù)學,發(fā)展知識,各自體驗到學習數(shù)學的成功感。
《最大公因數(shù)》教學反思8
公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學生在解決實際問題中探索公因數(shù)的認識。因此,在教學中要重視通過嘗試解決問題讓學生聯(lián)系已有的知識來引入公因數(shù)的認識。使學生初步體會學習公因數(shù)在解決實際問題中有著重要作用。
這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學生作業(yè)反饋情況來看,部分學生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預設(shè)時我雖然想到了學生會錯,也在課堂上進行了說明,但是少數(shù)學生還是出現(xiàn)了錯誤。
用例舉的策略找出所有公因數(shù)的教學中,教材上有種層次不同學生可以掌握的方法參考,在這里的.教學中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學生有序地列舉就行了,不同水平的學生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學時,有些學生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學生出現(xiàn)的各種方法可以讓學生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。
《最大公因數(shù)》教學反思9
1、創(chuàng)設(shè)情境引入新知。
我在教學時,改變教材中從單調(diào)的計算引出概念的做法,而是創(chuàng)設(shè)情景,通過生動有趣的畫面,吸引學生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動地對學生心理起到催化作用,有效地激發(fā)了學生探究新知識的興趣,使教與學始終處于活化狀態(tài)。
2、合理利用教材。
“循環(huán)小數(shù)”是學生較難準確地掌握和表述的一個概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復出現(xiàn)”等抽象說法,學生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學生計算發(fā)現(xiàn)商中重復出現(xiàn)一個相同的數(shù)字,再以王鵬喜歡游泳引出計算25÷22讓學生計算發(fā)現(xiàn)商中有兩個不斷重復出現(xiàn)的數(shù)字。從而引導學生發(fā)現(xiàn)發(fā)現(xiàn)商的特點,引出“循環(huán)小數(shù)”。這樣可以將難點分散,各個擊破。
3、引導學生探索,讓學生成為真正的'參與者。
《數(shù)學課程標準》指出:“教師應(yīng)激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!睌(shù)學學習不應(yīng)是簡單個體接受知識的過程,而是一個主體對自己感興趣的且是現(xiàn)實的生活性主題的探究與發(fā)展的過程。在新課中,我首先從生活中的現(xiàn)象入手,再引導學生主動探究數(shù)學中的問題,通過讓學生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學習方式充分調(diào)動學生多種感官的參與,給學生提供自主合作探究的空間,讓學生全面參與新知的發(fā)生、發(fā)展和形成過程,使學生真正體驗到探究的樂趣和做數(shù)學的價值。
當然,在這節(jié)課中也有很多不足之處。如我在教學中過多地注意預設(shè),使教學放不開手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學生思維空間,在今后的教學中,特別是環(huán)節(jié)預設(shè)應(yīng)在于精、在于厚實。
《最大公因數(shù)》教學反思10
日本著名數(shù)學教育家米山國藏指出:“作為知識的數(shù)學出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學的精神,數(shù)學的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學的設(shè)計中我們可以看到,教學中不只是讓學生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學形式層面的教學,而是更重視數(shù)學發(fā)現(xiàn)層面的教學,即讓學生在經(jīng)歷“數(shù)學家”解決問題的過程中去理解、去感受一種數(shù)學的思想和觀念──數(shù)學化思想。學生先是感知地板磚中隱含的數(shù)學,會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計,學生自然會聯(lián)想到地板磚中數(shù)學知識。但是,從解釋到應(yīng)用設(shè)計,在沒有學習公約數(shù)的.情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學的空間。讓他們在設(shè)計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學模型。再反思與總結(jié),引導學生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。
數(shù)學化思想觀念是指用數(shù)學眼光去認識和處理周圍事物或數(shù)學問題,可以培養(yǎng)學生良好的“用數(shù)學”意識,使數(shù)學關(guān)系成為學生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學思想,去隱含重要的數(shù)學方法,這樣,學生學到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學本質(zhì)的領(lǐng)悟。
《最大公因數(shù)》教學反思11
本課是在學生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行教學,通過找公因數(shù)的過程,讓學生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進一步引導學生觀察分析、討論,讓學生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學生參與探索,重視引發(fā)學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學生記憶。對于找公因數(shù)有困難的學生,教師要從方法上作進一步指導!稊(shù)學課程標準》指出:“學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學課,設(shè)計成為學生探索問題,解決問題的過程,這樣設(shè)計各個環(huán)節(jié)的教學流程,體現(xiàn)了教師是組織者——提供數(shù)學學習的材料;引導者——引導學生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學生共同探討規(guī)律。在整個教學的`過程中,學生真正成了課堂學習的主人,尋找最大公因數(shù)的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學生個性得到發(fā)揮,課堂成了學習的天地。
《最大公因數(shù)》教學反思12
教材共提供了三種不同的方式求兩個數(shù)的最大公因數(shù),方法一:分別寫出兩個數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個數(shù)的所有因數(shù),再看哪些因數(shù)是另一個數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個數(shù)的最大公因數(shù)。我還給學生補充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點推薦哪種呢?教材中補充拓展的分解質(zhì)因數(shù)方法學生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學中許多學生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時,如果用分解質(zhì)因數(shù)的`方法來求最大公因數(shù)不僅正確率高,而且速度也會大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對一些學生來說又有相當?shù)碾y度,至于為什么要把兩個數(shù)全部公有的質(zhì)因數(shù)相乘,一些學生還不太明白。
在教學中,我認為教師不能僅僅只是介紹,還有必要讓學生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時為止。如果用此法,學生必須首先認識“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識的考查在練習十五第6題中也有所體現(xiàn)。至于學生選用哪種策略找兩個數(shù)的最大公因數(shù),我并不強求。從作業(yè)反饋情況來看,多數(shù)學生更喜歡方法一,但是我們要提醒學生養(yǎng)成先觀察數(shù)據(jù)特點,然后再動筆的習慣。如兩個數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時,許多學生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學生能夠根據(jù)“當兩個數(shù)成倍數(shù)關(guān)系時,較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學中要率先垂范,做好榜樣。在鞏固練習過程中,也應(yīng)加強訓練,每次動筆練習之前補充一個環(huán)節(jié)——觀察與思考。使學生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。
這節(jié)課本來想把教材練習十五的習題講解完,但是時間不夠用了,只好下節(jié)課再講。
《最大公因數(shù)》教學反思13
本節(jié)課教學的內(nèi)容是認識公因數(shù)、最大因數(shù)以及求兩個數(shù)的最大公因數(shù)的方法,這些知識是在學生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上教學的。結(jié)合本節(jié)課的特點,聯(lián)系本班學生的實際情況,教師在教學過程中做了如下的嘗試
一、適時地滲透集合思想。在教學例1時,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導學生用集合圖來表示答案,從而滲透了集合思想,為后續(xù)的學習奠定感性認識。
二、關(guān)注學生探究活動的空間,將自主探究活動貫徹始終。在教學中,教師為學生創(chuàng)設(shè)了三次自主探究的機會。即一在情境中通過動手操作認識公因數(shù),二用集合圖表示因數(shù)之間的關(guān)系,三用自己的方法求出兩個數(shù)的最大公因數(shù)。在這幾次的探究活動中,教師始終積極地調(diào)動學生的情感,啟發(fā)他們主動參與,引導學生感知、理解,從而在腦中形成系統(tǒng)的知識體系。
本節(jié)課是教學運用最大公因數(shù)的有關(guān)知識來解決生活中的實際問題。通過創(chuàng)設(shè)生活情境,讓學生借助學具擺一擺,算一算或在紙上用彩筆畫一畫的方法把出現(xiàn)的.幾種情況記錄下來,既提高學生的學習積極性,也讓學生體會到新知與生活的密切聯(lián)系。同時,通過引導學生自主探索、組織交流并驗證結(jié)論,讓學生體會獲得成功的喜悅,更加積極地探索新知,掌握所學知識。
本節(jié)課的不足之處在于練習部分時間過于倉促,沒有足夠的時間讓學生交流與理解,部分學困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。
《最大公因數(shù)》教學反思14
公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導學生體驗“概念形成”的過程,讓學生“研究學習”、“自主探索”,學生不應(yīng)是被動接受知識的容器,而應(yīng)是在學習過程中主動積極的參與者,是認知過程的探索者,是學習活動的主體。
我是這樣組織教學的:
在教學過程中,我們不僅要求學生掌握抽象的數(shù)學結(jié)論,更應(yīng)注重學生概念形成的過程。應(yīng)引導學生參與探討知識的形成過程,盡可能挖掘?qū)W生潛能,能讓學生通過努力,自己解決問題,形成概念。通過創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學生自然地帶入求知的情境中去,在學生已有知識經(jīng)驗的基礎(chǔ)上放手讓學生去交流、探索。“哪一個正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學生自主探索、提出問題和解決問題的能力。接著進一步引導學生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學生在反復地思考和交流中加深對公因數(shù)這一概念的理解。
教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調(diào)動了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個過程中,由學生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學生的自主意識。
思考:
1.增強師生和生生之間的'互動
在教學過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學內(nèi)容比較枯燥,在課堂上如何調(diào)動學生的積極性,活躍課堂氣氛,使學生學的輕松、扎實。今后的教學中,在這一點上要都多下功夫。本課時的教學中,在組織學生交流找“16和12的公因數(shù)”的方法時,指名回答的形式過于單調(diào),有的同學沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學生生成的資源,幫助學生理解,局限學生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學生進行交流時,應(yīng)該注重引導學生有層次地介紹各種不同的方法。同時還要引導學生進行方法的比較和優(yōu)化。
《最大公因數(shù)》教學反思15
“公因數(shù)和最大公因數(shù)”是第三單元第三課時的內(nèi)容,在此之前,已經(jīng)學過了公倍數(shù)和最小公倍數(shù),掌握了公倍數(shù)和最小公倍數(shù)的概念和求法,這節(jié)課的教學過程與公倍數(shù)的教學非常相似,吸取了公倍數(shù)教學時的教訓,本節(jié)課教學公因數(shù)概念的時候,我先讓學生讀題,說清題意,再進行操作,這樣以來學生是帶著問題去操作的,不像公倍數(shù)時部分學生題目都理解不了就開始動手操作,不能完全達到本題操作的目的。在教學求公因數(shù)方法的時候,我也讓學生與公倍數(shù)求法進行了比較,通過比較學生發(fā)現(xiàn)了公倍數(shù)是無限的,沒有給定范圍時要寫省略號,而公因數(shù)是有限個的,要寫好句號,表示書寫完成;還發(fā)現(xiàn)找公倍數(shù)時是找最小公倍數(shù),而找公因數(shù)是最大公因數(shù);還發(fā)現(xiàn)求公因數(shù)的方法中是先找小數(shù)的因數(shù)再從其中找大數(shù)的因數(shù),而求公倍數(shù)卻是利用大數(shù)翻倍法,找出來的是大數(shù)的倍數(shù),再從其中找出小數(shù)的倍數(shù)。不僅兩個例題的教學過程相似,連練習的設(shè)計也是相似的,所以學生在完成練習的時候,已經(jīng)對練習的`形式較為熟悉,練習完成的較好。正因為兩節(jié)課太相似,所以小部分學生已經(jīng)有些混淆了,分不清怎么求公倍數(shù),怎么求公因數(shù),這個是在以后教學中要避免的。
這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學公倍數(shù)的時候,我沒有強調(diào)集合中元素的互異性,作業(yè)中不少學生在公倍數(shù)一欄填寫的數(shù)字,同時出現(xiàn)在左右部分的集合中,在這節(jié)課練習時,我特意強調(diào)了這一點,希望學生們能記住,在完成練習五的時候還發(fā)現(xiàn),部分學生對于2、3、的倍數(shù)的特征記得不清楚了,所以在判斷是不是它們的倍數(shù)的時候還有一些人用大數(shù)去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學生回憶2、3、5的倍數(shù)的特征,想必他們會節(jié)省更多的時間。
【《最大公因數(shù)》教學反思】相關(guān)文章:
最大公因數(shù)教學反思03-06
《最大公因數(shù)》教學反思10-02
《最大的麥穗》教學反思03-21
《最大的“書”》教學反思08-16
《最大的書》教學反思08-21
最大的書教學反思03-01
《最大麥穗》教學反思03-19
《最大的書》教學反思精選15篇03-17