亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

解簡易方程教學(xué)反思

時間:2024-09-09 13:28:30 教學(xué)反思 我要投稿

解簡易方程教學(xué)反思

  作為一名優(yōu)秀的教師,我們要有一流的教學(xué)能力,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?下面是小編為大家收集的解簡易方程教學(xué)反思,歡迎閱讀與收藏。

解簡易方程教學(xué)反思

解簡易方程教學(xué)反思1

  義務(wù)教育小學(xué)階段五年級數(shù)學(xué)上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。

  其中例1以X+3=9為例,討論了X加減某一數(shù)的方程解法。教學(xué)重點是運用等式的性質(zhì)1解方程,并引入方程的解與解方程兩個概念。如圖所示:

  為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點值得稱道,對于學(xué)生來說,這樣的圖示剖析,有助于學(xué)生自我探究理解,學(xué)習(xí)解簡易方程,從而學(xué)會解簡易方程的方法。

  但問題來了。在例1當(dāng)中沒有完整的解題過程示范,只有檢驗過程的示范。如上圖所示。而完整的示范出現(xiàn)在例3,經(jīng)歷了例1運用等式性質(zhì)1解方程,例2利用等式性質(zhì)2解方程,遞進至例3完成方程轉(zhuǎn)化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個完整的解方程的示范。如下圖所示:

  從學(xué)習(xí)心理學(xué)來講,學(xué)生在接觸新知識點的第一印象極為重要,第一次學(xué)習(xí)新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學(xué)生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的',無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學(xué)生的第一次接觸新知,“課上損失課外補”更是事倍功半。

  學(xué)材的編排著實讓我有點撓頭,明明能夠一目了解,通過閱讀自學(xué)就能搞定的解方程規(guī)范,這樣一個基礎(chǔ)性的知識點,非要放在例3才有完整呈現(xiàn),在實際的課堂教學(xué)中有點不得勁兒,也有些不符合學(xué)生學(xué)習(xí)的認知規(guī)律。

解簡易方程教學(xué)反思2

  本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。

  1.本課主要對解方程進行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!

  2、通過本課的作業(yè)檢測,有少量學(xué)生還是對本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  3、學(xué)生對于方程的書寫格式掌握的很好,這一點很讓人欣喜.

  人教版五年級數(shù)學(xué)上冊《解方程》教學(xué)反思

  解方程是數(shù)學(xué)領(lǐng)域里一個關(guān)鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。

  而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點。在教這單元之前,我一直困惑解方程要采用初中的“移項解題,還是運用書本的“等式性質(zhì)解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關(guān)系解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運用“移項解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運算之間的關(guān)系老教材的`方式改變,必有他的理由,能用嗎?

  困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。

解簡易方程教學(xué)反思3

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。能過本次活動我課下反思如下:

  1、在本課開始出示天平,提出“怎樣才能使得天平左邊只剩下x,而保持天平平衡”這一問題,引導(dǎo)學(xué)生由天平保持平衡的變化規(guī)律,推出議程兩過保持相等的變換方法,這樣的過程做到了“寓知識于游戲,化抽象為形象,變空沒為具體”,使學(xué)生的學(xué)習(xí)具有形象性、趣味性。

  2、如果我在課前準(zhǔn)備一些“小蛋珠”來代替演示砝碼,學(xué)生會更直觀的明白方程保持不變與等式一樣的規(guī)律了。

  要求方程的解法要根據(jù)天平的原理來進行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑:

  1、從教材的編排上,整體難度下降,有意避開了,形如:45-x=23等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)x前面是減號或除號的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學(xué)生不會列出x在后面的方程,我們更頭痛于學(xué)生的實際解答能力。在實際的`方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受--解答x在后面這類方程的解答方法,就是等號二邊同時加上x,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充x前面是除號或減號的方程的解法。要教他們列方程時怎么避免x前面是除號或減號的方程的出現(xiàn)等等。

解簡易方程教學(xué)反思4

  解方程是數(shù)學(xué)領(lǐng)域里一塊兒重要內(nèi)容,在實際生活中,學(xué)會了列方程解決問題之后,很多不易用算術(shù)方法解答的習(xí)題,卻能列方程很容易地解答出來,這足以說明列方程解決問題比算術(shù)法解決問題有非常明顯的優(yōu)越性。

  今年我教的是四年級,所用教材是青島版五四制教材,第一單元就出現(xiàn)了解方程的內(nèi)容,這部分教材我已經(jīng)教學(xué)了四遍了,按理說這第五次教學(xué)這部分內(nèi)容應(yīng)該是易如反掌、揮灑自如,可是面對新教材的設(shè)計,我這個五年不教學(xué)高年級的老師卻有了很大困惑----本教材的教學(xué)設(shè)計打破了傳統(tǒng)的教學(xué)方法,而出乎我預(yù)料的則是借用天平演示使學(xué)生感悟“等式”,知道“等式兩邊都加上或減去都乘或除以同一個非零的數(shù),等式仍然成立”這個規(guī)律,從而使學(xué)生進一步從真正意義上理解方程的意義,并學(xué)會運用等式的性質(zhì)解方程。在以前幾輪教材中,學(xué)習(xí)解方程之前都是先要求學(xué)生熟練掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差;減數(shù)=被減數(shù)-差;被除數(shù)=商×除數(shù);除數(shù)=被除數(shù)÷商等關(guān)系式來求出方程的解,就連我自己小時候?qū)W習(xí)的解方程也都是根據(jù)加減、乘除法各部分之間的關(guān)系求方程的解的。

  開始我有些懷疑,以為只有青島版五四制這個版本的教材利用了等式的性質(zhì)教學(xué)的,于是急切的打開電腦找到各種版本的電子教材翻看這部分內(nèi)容,卻發(fā)現(xiàn)各種版本的教材設(shè)計思路是一樣的,都是先學(xué)習(xí)等式的基本性質(zhì),接著再運用等式的基本性質(zhì)解方程。為了徹底弄明白教材的編寫意圖,我又找到了這幾個版本的教材所配套的教師教學(xué)用書翻看,新教材編寫者大致都是這樣解釋的:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減、乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接?戳诉@些內(nèi)容,我才從思想上認可了這種設(shè)計思路,原來是為了使小學(xué)教學(xué)解方程和中學(xué)教學(xué)解方程的方法保持一致。

  理解了教材的設(shè)計意圖,我開始強迫自己扭轉(zhuǎn)老的教學(xué)思路。結(jié)果學(xué)生因為是初次接觸,課堂上學(xué)習(xí)的竟是那樣的有滋有味。但在后面的教學(xué)中,我漸漸發(fā)現(xiàn)采用等式的基本性質(zhì)解方程給學(xué)生帶來的竟然是局部的銜接,而存在局部的銜接對學(xué)生會更困難。從教材的編排上,整體難度雖然有所下降,卻把用等式的性質(zhì)解方程的方法單一化了。教材有意避開了形如a—x=b a÷x=b等類型的題目,不教學(xué)此類方程的求解方法,因為這類題目如果采用等式的性質(zhì)來解非常麻煩。很顯然采用等式的性質(zhì)這種方法教學(xué)小學(xué)階段的解方程目前存在著很大的局限性。

  但在教學(xué)列方程解決實際問題時,我們又不能避免學(xué)生在列方程時,依然出現(xiàn)形如a-x=b和a÷x=b的方程,特別是我們不能刻意地給學(xué)生強調(diào)不能列出x在后面做減數(shù)或做除數(shù)的.方程,如果這樣強調(diào),學(xué)生心中會存在很大的疑惑,當(dāng)學(xué)生列出這樣的方程時,我們更頭痛于學(xué)生求解能力的局限性。

  鑒于以上原因,課堂上我采用了新老教學(xué)思路結(jié)合使用的方法,先從教材中的新思路運用等式的基本性質(zhì)教會孩子解較簡單的方程,以便于日后初中學(xué)習(xí)時順利接軌,同時對于初中學(xué)習(xí)“移項”也能順利接收。但是面對現(xiàn)在四年級孩子的思維及接受能力,我再利用老教材的教學(xué)思路“加減、乘除法各部分之間的關(guān)系”教給孩子解方程,至少這樣能讓我的學(xué)生會解各種類型的方程,特別是有利于孩子們列方程解決實際問題,他們不會再被“以乘代除”、“以加代減”的思路困擾著列方程,并且列出來還能順利解這個方程。

  我個人以為,這樣用新舊方法結(jié)合著教學(xué),既能讓學(xué)生為以后的學(xué)習(xí)做好銜接,形成綠色的通道,同時又體現(xiàn)解決同一問題方法、思路的多樣性。通過學(xué)生的課堂作業(yè),我發(fā)現(xiàn)教學(xué)效果出奇的好。

  通過解方程這部分內(nèi)容的教學(xué),我感到不論你的教齡有多長,你對同一教學(xué)內(nèi)容教學(xué)了有幾遍,每次教學(xué)都需要教師靜下心來好好的研究教材教法,這樣才能用最適合學(xué)生未來發(fā)展的方法去教學(xué)生。

解簡易方程教學(xué)反思5

《解簡易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  改革的原因(摘自教學(xué)參考書):

  新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。

  從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

  那么,小學(xué)生學(xué)這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學(xué)過程中真的出現(xiàn)了問題 。

  1.無法解如a-x=b和ax=b此類的方程

  新教材認為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負數(shù)的四則運算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因為其本質(zhì)是分式方程,依據(jù)等式的'基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

  我認為為了要運用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認為并不影響學(xué)生列方程解決實際問題。因為當(dāng)需要列出形如a-x=b或ax=b的方程時,總是要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認為,這樣的處理方法,有時更會無法避免地直接和方程思想發(fā)生矛盾。

  如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

  合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因為學(xué)生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。

  很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進式子,使考慮問題更加直接自然。為實現(xiàn)這個目標(biāo),很重要的一點,就是列式時應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時,用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認識方程的優(yōu)越性呢?

  我們不難看出,根據(jù)現(xiàn)實情境列方程解決問題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。

  2.解方程的書寫過程太繁瑣

  教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。

  因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了

  從這兩個方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運用它來解方程,在實際操作中,也存在許多的現(xiàn)實問題。那么,如果說用算術(shù)思路解方程對初中學(xué)習(xí)有負遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

解簡易方程教學(xué)反思6

  教學(xué)實錄:

  出示例題:6x-6.8×2=20

  師:請你觀察一下這道方程和我們原來所學(xué)的方程有什么不一樣?

  生:它比原來多了一個6.8×2。

  生:它比我們原來所學(xué)的方程多了一步運算。

  師:你回答的非常好,這個方程比剛才解答的方程要多一步計算,這就是今天要學(xué)習(xí)的解簡易方程。(板書課題)

  評析:

  “一切真理都要讓學(xué)生自己去獲得,由他重新發(fā)明,而不是草率地傳遞給他!睘榇,我在教學(xué)中通過讓學(xué)生對新舊知識進行比較,讓他們自己去獲取新知。繼而在教師的引導(dǎo)下嘗試求6x-6.8×2=20的解。

  我知道在前面已復(fù)習(xí)了ax土bx=c的方程,為推導(dǎo)求ax土b=c(b表示兩數(shù)的積)的方程作鋪墊;例題不但承接了上節(jié)課的內(nèi)容,而且引出了本節(jié)課的新內(nèi)容。這兩道題,幫助學(xué)生找到新舊知識最近的連接點,為新知的學(xué)習(xí)做好鋪路架橋的工作。

  教學(xué)實錄:

  師:這道題是6x減去什么的差等于20,你覺得這道題開始要怎樣解?

  生:應(yīng)先算6.8×2。

  師:為什么要先算6.8×2?

  生:因為前面是減法,后面是加法,我們應(yīng)該按照四則混合運算的順序先乘后減,所以要先算6.8×2。

  生:先算6.8×2就可以使方程變?yōu)?x-13.6=20,又回到了我們原來所學(xué)的方程。

  生:因為在這條方程中6.8×2可以先算出來,所以要先算。

  師:這兩位同學(xué)很會動腦筋也都觀察的非常仔細。解這個方程時,按運算順序能先算的一步就要先算出來,然后再求方程的'解,其中又把6x暫時看做一個數(shù)。

  師:現(xiàn)在就請一位同學(xué)上黑板來演示一遍,看這樣算行不行?其他同學(xué)也請自己在下面試試看。

  同學(xué)們踴躍地舉起了手。

  師:你們覺得他做的對嗎?做的完整嗎?

  生:我覺得他做的是對的,我也做到這么多。

  同學(xué)們都在那里點頭稱是。

  師:再仔細看看!

  同學(xué)們感到很疑惑,一個個皺緊了眉頭。沉默片刻,突然有一只小手舉了起來。

  生:他的答案是正確的,但是我覺得他做的不完整。

  學(xué)生被這個說法吸引了起來,頓時三三兩兩地舉起了手。

  生:因為他還沒有檢驗。

  師:你們同意嗎?

  生齊答:同意。

  師:對了,在解方程時我們一定要養(yǎng)成自覺檢驗的習(xí)慣,以此來檢查方程的解對不對。

  讓學(xué)生在自己的本子上邊回憶邊檢驗,然后同桌互相檢查檢驗的過程。

  評析:

  第一層:操作嘗試,理解概念

  為了讓學(xué)生更好地掌握怎樣去解答ax土b=c(b表示兩數(shù)的積)的方程,我讓學(xué)生自己去探究。

  第二層:潛移默化,推導(dǎo)方法

  有了上一層的前提教學(xué),在這一層,我就可以放手讓學(xué)生嘗試解答例題了。并提出問題你覺得這道題開始時要怎樣去解?為什么?該怎樣檢驗方程的解?

  其實這些“想”的過程正是教師要教的過程,也是學(xué)生解題的的思考過程。這些自學(xué)提綱充當(dāng)了學(xué)生自學(xué)的“領(lǐng)路人”,學(xué)生通過提示,再思考該填上的內(nèi)容,新知識便順利地掌握了。

解簡易方程教學(xué)反思7

  在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。

  出示例題2,小組合作學(xué)習(xí),討論:

 、倌闶窃鯓永斫鈭D意的?

 、谀闶侨绾瘟蟹匠痰模

 、勰闶歉鶕(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

  指名回答,說說自己的'分析。你對他的分析有什么要問的嗎?

  教師總結(jié)解題關(guān)鍵。

  教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

  最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?

  充分練習(xí),進行思維訓(xùn)練,設(shè)計有趣的習(xí)題“幫小兔找家”:4x-12=20 3x=15 x+7=15 2x+3×2=16

  18-2x=2 15÷3+4x=25

  鞏固知識,激發(fā)興趣。

解簡易方程教學(xué)反思8

  人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質(zhì)來解方程,這個方法雖然說使得小學(xué)的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學(xué)生以后的發(fā)展是有利的。但是教材中故意避開了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時也會無法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運算各部分的關(guān)系來解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達這樣的.思想:這樣的列法是不被認可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時,學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運用的學(xué)生很少,對大部分學(xué)生來說越教越是糊涂,把本來剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時故意回避嗎?

  在教學(xué)列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個量?引導(dǎo)學(xué)生進行概括,去年的身高、今年的身高、相差數(shù)。追問:這三個量之間有怎樣的相等關(guān)系呢?

  去年的身高+長高的8cm=今年的身高

  今年的身高-去年的身高=長高的8cm

  今年的身高-長高的8cm=去年的身高

  你能根據(jù)這三個數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

  X+8=152 152-x=8 152-8=x

  追問學(xué)生你對哪個方程有想法?學(xué)生一致認為對第三個方程有想法?生1:這個根本沒有必要寫x,因為直接可以計算了。生2:x不寫,就是一個算式,直接可以算了。我肯定到:列算式解決實際問題時,未知數(shù)始終作為一個“解決的目標(biāo)”不參加列式運算,只能用已知數(shù)和運算符號組成算式,所以這樣的x就沒有必要。接著讓學(xué)生解這兩個方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實減法是加法的逆運算,是有加法轉(zhuǎn)變過來。因此,我們在思考數(shù)量關(guān)系時,只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個字母(如x)為代表和已知數(shù)一起參加列式運算x+b=a,體會列方程解決問題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問題的方法——列方程解決問題。

  接著用同樣的教學(xué)方法探究bx=a的解決問題。

  我這樣的教學(xué)不知道是否合理?其實小學(xué)生在學(xué)習(xí)加減法、乘除法時,早就對四則運算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗。要不要運用等式的性質(zhì)對學(xué)生再加以概括呢?

解簡易方程教學(xué)反思9

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個加數(shù)=和-另一個加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個因數(shù)=積÷另一個因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時加上或減去同一個數(shù)等式不變,和等式的兩邊同時乘或除以同一個數(shù)(0除外),等式不變進行解方程的,新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。

  于是,我在教學(xué)時充分地利用天平實物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡易方程時學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個數(shù)時,只要在方程的兩邊同時減(或加)同一個數(shù),未知數(shù)乘(或除)一個數(shù)時,只要在方程的兩邊同時除(或乘)同一個數(shù)即可。一般不會出現(xiàn)運算符號弄錯的現(xiàn)象了。

  為新課奠定了基礎(chǔ)。在突破重難點時,我設(shè)計借助天平理解解方程的過程,當(dāng)學(xué)生根據(jù)例1圖意列出方程X+3=9時,我把皮球換成方格出現(xiàn)在大屏幕上時,問學(xué)生:“要得出X的值,在天平上應(yīng)如何操作?”由于問題提的不符合學(xué)生實際學(xué)習(xí)情況,學(xué)生一時不知如何回答。我連忙糾正問道:“天平左邊有一個X和一個3,怎么讓方程左邊就剩下X呢?”學(xué)生馬上回答:“減去3!睅煟骸疤炱接疫呉矐(yīng)該怎么辦?”生:“也減去3.”師:“為什么?”生:“天平的兩邊同時減去相同的數(shù),天平仍然保持平衡!蔽乙騽堇麑(dǎo)地使學(xué)生學(xué)習(xí)解方程的方法及書寫格式。課堂練習(xí)時間也不充裕,致使擴展思維題學(xué)生沒時間去思考,沒有達到預(yù)想的課堂效果。一節(jié)課雖然結(jié)束了,卻給我留下了難忘的印象,經(jīng)過認真反思總結(jié)如下:

  一、教師要進入教材又要走出教材

  教師要鉆研教材,要吃透教材,準(zhǔn)確、全面的弄清教材的精神實質(zhì),確定重點難點。但不僅這些,教師還要走出教材,縱觀教材前后知識間的聯(lián)系,橫看課內(nèi)知識與課外知識體系的位置,對本堂課所教知識在教材中的地位和應(yīng)起的作用有個清晰的認識。教師進入教材是基礎(chǔ),走出教材是目的。惟有如此,才能幫助學(xué)生對當(dāng)前知識進行整合與延伸。

  二、教師要善于捕捉教學(xué)中的生成性內(nèi)容

  在實際的教學(xué)活動中,師生雙方的活動往往會激發(fā)出來新的生成性內(nèi)容,有的內(nèi)容是學(xué)生遺忘的舊知,這時,我們應(yīng)該幫助學(xué)生激活舊知;有的內(nèi)容又是超越了本堂課的教學(xué)要求,教師要幫助學(xué)生拓展延伸。生成性的內(nèi)容它源于教材,又超越于教材,有利于促進學(xué)生的成長和發(fā)展。

  三、教學(xué)要前瞻后顧

  作為一名數(shù)學(xué)老師,不管你任教哪一年級,你都應(yīng)對數(shù)學(xué)教材有一個系統(tǒng)的認識。在教學(xué)中,除了讓學(xué)生把本冊教材的'知識掌握扎實,還要幫助學(xué)生構(gòu)建知識系統(tǒng)。把以前學(xué)過的知識與當(dāng)前知識聯(lián)系起來,對當(dāng)前知識又要有拓展延伸的可能。

  四、精心的安排練習(xí)題

  解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運用上都有一定的困難,而且本部分教學(xué)很是枯燥無味,于是我加入了闖關(guān)的情節(jié),精心的安排練習(xí)題。當(dāng)講授完利用天平平衡的道理解方程后,馬上進行了“填空練習(xí)”,這四個練習(xí)題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對解方程掌握的還不錯。

  但本節(jié)課不足之處在于最后留的時間過少,檢驗的格式?jīng)]有完整的交給孩子們?蓛(nèi)心矛盾:檢驗的目的已經(jīng)達到了,必須要重視其格式嗎?

  總體來說,喜歡讓孩子們在快樂中學(xué)到知識,喜歡聽孩子們說:“我還想上數(shù)學(xué)課。”

解簡易方程教學(xué)反思10

  長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù),解簡易方程教學(xué)反思。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接,教學(xué)反思《解簡易方程教學(xué)反思》。通教材的老師也主張用等式的基本性質(zhì)解方程。

  在我的教學(xué)過程中卻出現(xiàn)了這樣的問題 ,利用等式的基本性質(zhì)解形如x+a=b與x-a=b, ax=b與x÷a=b一類的方程,學(xué)生方法掌握起來比較簡單。但寫起來比較繁瑣。然而遇到a-x=b、a÷x=b的方程時,由于小學(xué)生還沒有學(xué)習(xí)正負數(shù)的四則運算,如果利用等式的基本性質(zhì)解,方程變形的`過程及算理解釋比較麻煩;但是在教學(xué)過程中我們不可避免地會遇到根據(jù)現(xiàn)實情境從順向思考列出X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程,要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。于是,我又要求學(xué)生遇到X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程時,要求學(xué)生會用減法和除法各部分之間的關(guān)系來做。但是,我發(fā)現(xiàn)這讓有些孩子無所適從。我現(xiàn)在感到很困惑,我們到底怎樣做才是合理得呢?懇請各位老師指教。

解簡易方程教學(xué)反思11

  《解方程》是人教課標(biāo)版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了用字母表示數(shù)和方程的基礎(chǔ)上進行教學(xué)的,新課程的解方程一改以往的由加減乘除各部分之間的關(guān)系的引入方法,運用更能讓學(xué)生明白的天平平衡的原理來引入,《解簡易方程》教學(xué)反思。解題的基本原理從未改變——等式的基本性質(zhì),即:方程的兩邊同時加上或減去相同的數(shù),除以或乘以同一個不為零的數(shù),方程的兩邊仍相等。

  這節(jié)課內(nèi)容不是新內(nèi)容,但方法卻是新方法,我認為設(shè)計教學(xué)時應(yīng)將“方程的解”和“解方程”這兩個概念放到例題1的后面引入,能使學(xué)生對概念理解更充分,印象更深刻。

  教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多種,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去,為了不耽誤更多的時間,我沒有繼續(xù)深入探究。接下來教學(xué)例2,同樣我利用天平原理幫助學(xué)生理解,在學(xué)生說出要把天平兩端平均分成3分,得到每份是6的基礎(chǔ)上,我用課件演示了分的過程,讓學(xué)生把演示過程寫出來,從而解出方程,教學(xué)反思《《解簡易方程》教學(xué)反思》。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。當(dāng)學(xué)生的解題方法得到了教師的肯定,讓學(xué)生明白這種解題方法的`優(yōu)缺點。培養(yǎng)學(xué)生的創(chuàng)新能力和自主學(xué)習(xí)的能力讓學(xué)生成為課堂的主體,教師充分發(fā)揮主導(dǎo)作用。

  按理說,只要稍加類推,學(xué)生應(yīng)該能掌握方程的解法。但接下來的練習(xí)卻大大出人意料,除了少數(shù)成績較好的學(xué)生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經(jīng)過認真反思總結(jié)如下:

  一是從天平過渡到方程,類推的過程學(xué)生理解不透,天平兩端同時減去3個方塊,就相當(dāng)于方程兩邊同時減去3,這個過程寫下來時,要強調(diào)左右兩邊原來狀態(tài)保持不變,要原樣寫下來,如果這樣的話就不會造成有的學(xué)生不會格式;

  二是對為什么要減去3討論不夠,雖然有學(xué)生回答上來了,我應(yīng)該能覺察出學(xué)生理解有困難,課件和天平能讓學(xué)生懂得方程兩邊要同時減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當(dāng)時舉例說明也許很有效果,比如:x-3=6,我們該怎么辦呢?學(xué)生通過對比討論,就會發(fā)現(xiàn)我們要求出一個x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補足,這樣效果肯定好些。

  三是備學(xué)生環(huán)節(jié)出現(xiàn)差錯,這部分內(nèi)容應(yīng)該不難,但學(xué)生的現(xiàn)有基礎(chǔ)是確定教學(xué)方法的基礎(chǔ),從教學(xué)效果看,我明顯做的不夠。

  四是教學(xué)內(nèi)容確定不恰當(dāng),本來我是想,上公開課要有一定的容量,就把例1和例2放在一起教學(xué),既有加減,又有乘除的,只教學(xué)加法和乘法的,減法和除法的解法,讓學(xué)生通過遷移類推的方法的解決。由于我班學(xué)生是本期從各個地方轉(zhuǎn)來的,基礎(chǔ)參差不齊,而且整體水平較差,因此安排兩個例題有難度。

解簡易方程教學(xué)反思12

  學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對于解比較簡單的方程,學(xué)生并不陌生。

  比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強勢效應(yīng),促進良好的書寫習(xí)慣的形成。對于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進入一個理想的`境界。

  不難看出,學(xué)生經(jīng)歷了把運算符號+看錯成了-,又自行改正的過程,在這一過程中學(xué)生體驗到了緊張、焦急、期待,成功的感覺,這時的數(shù)學(xué)學(xué)習(xí)已進入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長的過程,真正落實了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心的目標(biāo),在這個思維過程中,學(xué)生獲得了情感體驗和發(fā)現(xiàn)錯誤又自己解決問題的機會。老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的心理空間,不然,他怎么會對老師說老師,我太緊張了,這是學(xué)生對老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

解簡易方程教學(xué)反思13

  在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。

  出示例題2,小組合作學(xué)習(xí),討論:①你是怎樣理解圖意的?②你是如何列方程的?③你是根據(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學(xué)生的'練習(xí)。指名回答,說說自己的分析。你對他的分析有什么要問的嗎?教師總結(jié)解題關(guān)鍵。

  教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

  最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?

  充分練習(xí),進行思維訓(xùn)練,設(shè)計有趣的習(xí)題“幫小兔找家”:4x-12=203x=15x+7=152x+3×2=16

  18-2x=215÷3+4x=25

  鞏固知識,激發(fā)興趣。

【解簡易方程教學(xué)反思】相關(guān)文章:

解簡易方程的教學(xué)反思02-22

《簡易方程》教學(xué)反思03-11

簡易方程教學(xué)反思02-26

(推薦)簡易方程教學(xué)反思07-10

五年級數(shù)學(xué)《解簡易方程》教學(xué)反思03-30

簡易方程教學(xué)反思15篇03-10

簡易方程教學(xué)反思(15篇)03-10

五年級上冊數(shù)學(xué)解簡易方程教學(xué)反思04-07

五年級上冊數(shù)學(xué)《解簡易方程》教學(xué)反思10-03