《解方程》教學(xué)反思15篇
作為一位剛到崗的教師,教學(xué)是重要的工作之一,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,那么什么樣的教學(xué)反思才是好的呢?下面是小編為大家收集的《解方程》教學(xué)反思,歡迎閱讀與收藏。
《解方程》教學(xué)反思1
解方程的內(nèi)容主要是在五年級(jí)就學(xué)過的,但六年級(jí)上期仍然出現(xiàn)了解方程的內(nèi)容,說明了這個(gè)知識(shí)點(diǎn)的重要性,既是重點(diǎn),又是難點(diǎn)。在具體的解方程過程中,通過學(xué)生的課堂活動(dòng)和課后作業(yè)反饋,總的說來,還是存在很大的問題。我出了12個(gè)題,全對(duì)的占少數(shù),一般要錯(cuò)四個(gè)左右。下來后我進(jìn)行了深刻的反思。發(fā)現(xiàn)了幾個(gè)主要錯(cuò)誤:
1 馬虎。體現(xiàn)在抄題抄錯(cuò),全班64人有6個(gè)抄錯(cuò)了題。
2 較復(fù)雜點(diǎn)的解方程,思路混亂,不知道把哪一部分看作“整體”。 3 過于依賴計(jì)算器,對(duì)于除不盡的筆算出錯(cuò)。
4錯(cuò)得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。
針對(duì)以上幾個(gè)錯(cuò)誤,我認(rèn)真做了分析,主要的`原因有下面幾個(gè): 1 課前過于高估學(xué)生,沒有系統(tǒng)的復(fù)習(xí)相關(guān)內(nèi)容。
2 現(xiàn)在這個(gè)班是上個(gè)五年級(jí)兩個(gè)班重新分的班,下來我問了前面教過的數(shù)學(xué)老師,兩個(gè)老師教的方法不一樣。
3 作業(yè)量不夠。
所以,在后期的教學(xué)中做了一些調(diào)整:
1 系統(tǒng)復(fù)習(xí)了相關(guān)知識(shí)。
2 多作例題講解,由易入難。
3 有針對(duì)性的出題,容易出錯(cuò)的地方進(jìn)行大量的練習(xí)。
4 搞了一個(gè)“我是一個(gè)小老師”的活動(dòng),全對(duì)的同學(xué)給其他同學(xué)當(dāng)老師,一個(gè)對(duì)一個(gè)的教。
5 要求每個(gè)同學(xué)都獨(dú)立的出一個(gè)解方程的題,然后請(qǐng)一個(gè)同學(xué)完成并作評(píng)價(jià)。
經(jīng)過鍛煉,現(xiàn)在對(duì)解方程這個(gè)這知識(shí)點(diǎn),同學(xué)們興趣和完成率大有提高。
《解方程》教學(xué)反思2
今天,上了冀教版五年級(jí)上冊(cè)《解方程》一課,我就本節(jié)課的得與失做一下反思。
一、課程分析
方程是五年級(jí)學(xué)生接觸的一種新的知識(shí)內(nèi)容,在建立了用字母表示數(shù)的已有知識(shí)基礎(chǔ)上,進(jìn)一步學(xué)習(xí)本節(jié)課內(nèi)容,方程是數(shù)學(xué)數(shù)與代數(shù)部分的內(nèi)容,起著舉足輕重的作用。方程是學(xué)生解決數(shù)學(xué)問題一種重要工具,日后初中、高中時(shí)時(shí)刻刻離不開方程。所以,我對(duì)本單元內(nèi)容很重視,也給學(xué)生講述其重要性,重點(diǎn)還是要讓學(xué)生在學(xué)習(xí)、使用的過程中體會(huì)方程的優(yōu)勢(shì)。本節(jié)課是本單元的第三節(jié)內(nèi)容,在學(xué)習(xí)了等式的性質(zhì)的基礎(chǔ)上,解簡(jiǎn)單的方程。因此,我制訂了以下教學(xué)目標(biāo):
1.經(jīng)歷自主探究、合作交流學(xué)習(xí)利用等式的性質(zhì)解方程的過程。
2.能根據(jù)具體情境,找到等量關(guān)系、列方程并解簡(jiǎn)單的方程。
3.積極參與數(shù)學(xué)活動(dòng),獲得運(yùn)用已有知識(shí)解決問題的成功體驗(yàn),激發(fā)解方程的興趣。
二、教學(xué)過程
1.復(fù)習(xí)舊知導(dǎo)入。復(fù)習(xí)剛剛學(xué)過的等式的性質(zhì),學(xué)生舉例說明。
2.交流解疑。先對(duì)子交流、小組交流,解決預(yù)習(xí)過程中的疑問,同時(shí)整理出小組未能解決的疑難問題。
3.展示交流。學(xué)生代表1展示問題1的解決方法,學(xué)生提問、補(bǔ)充。這里使學(xué)生理解用方程解決問題的步驟、解方程的方法、檢驗(yàn)的方法。學(xué)生代表2展示問題2的解決方法,再次理解以上問題。
4.理解新概念。觀察兩個(gè)解方程的式子,理解方程的解、解方程的概念。讓學(xué)生對(duì)比理解方程的解是結(jié)果,解方程是過程。
5.鞏固訓(xùn)練、強(qiáng)調(diào)細(xì)節(jié)。學(xué)生自主完成試一試兩題,出錯(cuò)時(shí)讓學(xué)生指正。若未出錯(cuò),強(qiáng)調(diào)注意寫“解”、等號(hào)對(duì)齊等細(xì)節(jié)。
三、課后反思
本節(jié)課需要改進(jìn)的地方
1.學(xué)習(xí)目標(biāo)的制定與出示。上課之前只給學(xué)生說了我們本節(jié)課要利用等式基本性質(zhì)來解方程,目標(biāo)不具體。我們應(yīng)為學(xué)生制定具體的學(xué)習(xí)目標(biāo),同時(shí)要讓學(xué)生知道?梢栽诮o學(xué)生預(yù)習(xí)時(shí),給學(xué)生以問題的形式出示給學(xué)生。一次本節(jié)課學(xué)習(xí)目標(biāo)應(yīng)為:(1)用方程解決問題的`步驟是什么?(2)解方程的依據(jù)是什么?(3)什么叫方程的解?什么叫解方程?
2.舊知復(fù)習(xí)時(shí)間過長(zhǎng)。學(xué)生復(fù)習(xí)等式性質(zhì)時(shí),舉例出現(xiàn)問題,浪費(fèi)了許多時(shí)間,造成了前松后緊的局面。應(yīng)該簡(jiǎn)單復(fù)習(xí),或讓學(xué)生在探索新知的過程中發(fā)現(xiàn)舊知,復(fù)習(xí)舊知。
3.小組合作的實(shí)效性,F(xiàn)在我班的小組合作還不扎實(shí),或者說實(shí)效性不強(qiáng)。學(xué)生在討論的過程中不知道該如何合作、如何交流?梢哉f是有形無實(shí),接下來要再次培訓(xùn)組長(zhǎng),讓組長(zhǎng)有組織、帶領(lǐng)小組同學(xué)有效合作。同時(shí),訓(xùn)練其他同學(xué)如何參與,交流什么。使小組合作更具實(shí)效性。
四、教學(xué)思考
1.教學(xué)有法,但無定法。我們?cè)谇笠蓢L試的主體學(xué)習(xí)方法下,應(yīng)探索出屬于自己的上課模式或者方法。我一直在想數(shù)學(xué)四大模塊應(yīng)有不同的教學(xué)方法,例如圖形問題注重操作、可能性問題注重游戲體驗(yàn)等。
2.全面關(guān)注學(xué)生,關(guān)注全體學(xué)生。我的班級(jí)是一個(gè)比較活躍的班級(jí),這里的活躍其實(shí)只是課堂上七、八個(gè)積極同學(xué)的表現(xiàn),這種現(xiàn)象的背后還有更多的同學(xué)沒有參與、只是聽眾,沒有參與就沒有思考,沒有思考地學(xué)數(shù)學(xué)何來成效。所以最近一直在關(guān)注大號(hào)同學(xué)的表現(xiàn),教師關(guān)注會(huì)使他們獲得自信,獲得成功后的喜悅,學(xué)習(xí)也自然有動(dòng)力。舉個(gè)我們班的例子:上《認(rèn)識(shí)方程》一課時(shí),因?yàn)檩^簡(jiǎn)單,整節(jié)課我一直在關(guān)注3、4號(hào)同學(xué)的表現(xiàn),給他們更多的機(jī)會(huì)展示,結(jié)果課后我發(fā)現(xiàn)3、4號(hào)同學(xué)的作業(yè)有明顯的進(jìn)步,甚至有個(gè)別4號(hào)同學(xué)比組長(zhǎng)寫的都要好。也就是欣賞、關(guān)注的成果。
以上兩個(gè)問題有待我們一起思考,請(qǐng)各位領(lǐng)導(dǎo)、戰(zhàn)友多提寶貴意見!
《解方程》教學(xué)反思3
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順?biāo)浦郏敛毁M(fèi)力。學(xué)生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會(huì)解形如a-x=b及a÷x=b方程。
本以為按新課標(biāo)教材這兩類方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會(huì)上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補(bǔ)充講解,且屬于學(xué)生必會(huì)、考試必考內(nèi)容。原因如下:
1、在列方程解決實(shí)際問題時(shí),學(xué)生中往往會(huì)出現(xiàn)以上兩種類型方程,教師難以回避。
2、如果教師有意回避,會(huì)使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯(cuò)誤理解。
基于上述原因,我今天在教學(xué)完例2后為學(xué)生補(bǔ)充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來解答時(shí),嘗試成功。通過指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的`原因可能是安排的時(shí)機(jī)還不夠成熟。因?yàn)閷W(xué)生剛接觸解方程沒多久,還須一段時(shí)間鞏固教材中最基本的常見方程類型,而今天補(bǔ)充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時(shí)不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學(xué)困生聽完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的'現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號(hào)兩邊同時(shí)除以5求解的,可卻有學(xué)生先將等式兩邊同時(shí)除以X,變成了“1.5÷X=5”, 這可真是越變?cè)綇?fù)雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,我覺得按加減乘除法各部分之間的關(guān)系教好呢,而用等式的性質(zhì)教學(xué)好比較復(fù)雜。
《解方程》教學(xué)反思4
解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級(jí)的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。
在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書本的“等式性質(zhì)”解題,還有老教材中提到的運(yùn)用關(guān)系式各部分之間的關(guān)系來解決?面對(duì)困惑,向老教師請(qǐng)教,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的'理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長(zhǎng)期以來,小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來,這樣的教學(xué)書本的知識(shí)不丟,方法又可以多種變通。
通過這塊知識(shí)的整理,我感覺到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學(xué)生,數(shù)學(xué)經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學(xué)生走最好最合適的路。
《解方程》教學(xué)反思5
本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的',告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。
1.本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!
2、通過本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。
3、學(xué)生對(duì)于方程的書寫格式掌握的很好,這一點(diǎn)很讓人欣喜.
《解方程》教學(xué)反思6
解方程是是數(shù)學(xué)知識(shí)里面很關(guān)鍵很重要的一個(gè)知識(shí)點(diǎn)。,在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級(jí)的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。
在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書本的“等式性質(zhì)”解題,面對(duì)困惑,向老教師請(qǐng)教,原來還有第三種老教材的“四則運(yùn)算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長(zhǎng)期以來,小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。
因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的'要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來,這樣的教學(xué)書本的知識(shí)不丟,方法又可以多種變通。所以我在教學(xué)解方程的時(shí)候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項(xiàng)”,在這里的時(shí)候,我給初中的“移項(xiàng)”起了一個(gè)新的名字:移——變號(hào)。引入了這一個(gè)方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。
但是在移-變號(hào)這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運(yùn)用到四則運(yùn)算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來的是,學(xué)生忘了等式的興致,忘了移—變號(hào)是怎么來的,而我,則在移-變號(hào)的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號(hào)的立腳點(diǎn)就是等式的性質(zhì),如此反復(fù),學(xué)生加強(qiáng)了對(duì)解方程的認(rèn)識(shí),也更牢固的記住了等式的興致。而通過這一次的上課,我意識(shí)到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會(huì)顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識(shí)點(diǎn),只有這樣,才能夠給學(xué)生清晰的思路。
《解方程》教學(xué)反思7
1、教材的編排上難度下降。有意避開了,形如:7.8—X=2.6,12÷X=1.2等類型的題目。把用等式解決的方法單一化了,這和提倡算法多樣化又有了矛盾。盡管老師一再強(qiáng)調(diào)用等式的性質(zhì)解,還是有多數(shù)學(xué)生用原來的方法解答。
2、強(qiáng)調(diào)書寫格式得有層次。告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時(shí)強(qiáng)調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡(jiǎn)單的方程,如果有過程,方程中的等號(hào)不易上下對(duì)齊,這點(diǎn)問題不大。到熟練之后省去過程時(shí)再強(qiáng)調(diào)格式。
。、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,()可以實(shí)際上反而是多了。教師要給他們補(bǔ)充X在后面的方程的.解法。要教他們列方程時(shí)怎么避免X在后面這樣方程的出現(xiàn)等等。
在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,用這樣的方法來解方程之后,書本中不再出現(xiàn)X做減數(shù),除數(shù)的方程題了,但學(xué)生在列方程解實(shí)際應(yīng)用時(shí),學(xué)生列出的方程中還有這樣的題目,但不會(huì)解答,這時(shí)我們又要強(qiáng)調(diào)算法多樣化,我們會(huì)讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上X,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。有的學(xué)生又不得不用除、減法各部分間的關(guān)系做題。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。因此教學(xué)中我還是對(duì)學(xué)生說盡量用方程的性質(zhì)解,若遇到用等式的性質(zhì)解決不了時(shí),可以用以前學(xué)過的知識(shí)解答。認(rèn)識(shí)方程教學(xué)反思解方程教學(xué)反思方程教學(xué)反思
《解方程》教學(xué)反思8
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順?biāo)浦郏敛毁M(fèi)力。學(xué)生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會(huì)解形如a-x=b及a÷x=b方程。
本以為按新課標(biāo)教材這兩類方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會(huì)上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補(bǔ)充講解,且屬于學(xué)生必會(huì)、考試必考內(nèi)容。原因如下:1、在列方程解決實(shí)際問題時(shí),學(xué)生中往往會(huì)出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會(huì)使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯(cuò)誤理解。
基于上述原因,我今天在教學(xué)完例2后為學(xué)生補(bǔ)充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來解答時(shí),嘗試成功。通過指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的原因可能是安排的.時(shí)機(jī)還不夠成熟。因?yàn)閷W(xué)生剛接觸解方程沒多久,還須一段時(shí)間鞏固教材中最基本的常見方程類型,而今天補(bǔ)充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時(shí)不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學(xué)困生聽完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號(hào)兩邊同時(shí)除以5求解的,可卻有學(xué)生先將等式兩邊同時(shí)除以X,變成了“1.5÷X=5”, 這可真是越變?cè)綇?fù)雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學(xué)好呢?
《解方程》教學(xué)反思9
本節(jié)課的內(nèi)容包括兩個(gè)方面:
一是理解“等式兩邊同時(shí)加上或減去同一個(gè)數(shù),所得結(jié)果仍然是等式”
二是應(yīng)用等式的性質(zhì)解只含有加法和減法運(yùn)算的簡(jiǎn)單方程。解方程是學(xué)生剛接觸的新知識(shí),學(xué)生原有的知識(shí)儲(chǔ)備與生活經(jīng)驗(yàn)不足,因此教學(xué)中老師要時(shí)刻關(guān)注學(xué)生的學(xué)習(xí)的情況,引導(dǎo)學(xué)生經(jīng)歷將現(xiàn)實(shí)生活問題加以數(shù)學(xué)化,引導(dǎo)學(xué)生通過操作、觀察、分析和比較,由具體的知識(shí)滲透到抽象的去理解等式的性質(zhì),并應(yīng)用等式的性質(zhì)來解方程。在這節(jié)課的教學(xué)中,應(yīng)讓學(xué)生理解并掌握等式的性質(zhì),這是為學(xué)生后續(xù)學(xué)習(xí)方程打下較扎實(shí)的基矗
一、讓學(xué)生通過動(dòng)手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)
老師先出示天平,并在天平兩邊各放一個(gè)20克的砝碼,“你能用式子表示出兩邊的關(guān)系?”生寫出20=20;教師在天平的一邊增加一個(gè)10克砝碼,“這時(shí)的關(guān)系怎么表示?”生寫出20+10>20,“這時(shí)天平的兩邊不相等,怎樣才能讓天平兩邊相等?”生交流得出在天平的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天平圖,學(xué)生觀察,教師板書,并組織學(xué)生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過全班交流,在交流中教師應(yīng)逐步提示,因?yàn)檫@是一個(gè)全新的知識(shí),得出等式的.性質(zhì)。最后,讓學(xué)生自己寫幾個(gè)等式看一看。通過具體的操作為學(xué)生探究問題,尋找結(jié)論提供了真實(shí)的情境,富有啟發(fā)性、引領(lǐng)性,讓學(xué)生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并掌握了知識(shí)。
二、讓學(xué)生運(yùn)用等式的性質(zhì)解方程
引入了等式的性質(zhì),其目的就是讓學(xué)生應(yīng)用這一性質(zhì)去解方程,第一次學(xué)習(xí)解方程,學(xué)生心理上難免會(huì)有些準(zhǔn)備不足,為了幫助學(xué)生應(yīng)用等式的性質(zhì)解方程,課前布置了學(xué)生預(yù)習(xí),課中我先讓學(xué)生嘗試練習(xí),但巡視中發(fā)現(xiàn)學(xué)生沒有根本理解,我就利用天平所顯示的數(shù)量關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)“在方程的兩邊都減去10,使方程的左邊只剩下x”,并詳細(xì)講解解方程的書寫格式,包括檢驗(yàn)。通過這樣有步驟的練習(xí),幫助學(xué)生逐漸掌握解方程的方法。然后讓學(xué)再次通過修正,試一試,鞏固解方程的知識(shí)。本節(jié)課達(dá)到了預(yù)期的效果。
三、遺憾的是,由于星期一集體活動(dòng)的沖突,導(dǎo)致今天的上課時(shí)間30分鐘都不到,因此學(xué)生的交流顯得不充分,教師的重點(diǎn)講解顯得不到位
《解方程》教學(xué)反思10
今天對(duì)五年級(jí)上冊(cè)《解方程》進(jìn)行了教學(xué)。本課主要對(duì)教學(xué)例一和例二進(jìn)行了教學(xué)。
一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的`解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學(xué)會(huì)了本節(jié)課的知識(shí)。對(duì)于概念的理解也很扎實(shí)。
二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過精心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。
三、本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!
四、通過本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。
五、學(xué)生對(duì)于方程的書寫格式掌握的很好,這一點(diǎn)很讓人欣喜。
總之,“興趣是學(xué)生最好的老師”,只要緊緊抓住這一點(diǎn),教學(xué)質(zhì)量的提高指日可待。
《解方程》教學(xué)反思11
《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個(gè)重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對(duì)于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。
在開課時(shí),通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。
教學(xué)時(shí),我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗(yàn)的方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗(yàn),根據(jù)課本上的“注意”強(qiáng)調(diào)說明雖然不要求每題都寫出檢驗(yàn),但都要口算進(jìn)行檢驗(yàn),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
在出示概念時(shí),先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對(duì)兩概念講講自己的理解,自己勾畫出重點(diǎn)字,然后才是教師對(duì)概念重點(diǎn)的強(qiáng)調(diào),這樣更能區(qū)分兩概念不同的含義,對(duì)難點(diǎn)的突破也是一個(gè)很好的方法,可以讓學(xué)生將易混易錯(cuò)的地方,清楚理解后,明確兩概念的.區(qū)別,這點(diǎn)在課上忽略了。
在后面的反饋練習(xí)時(shí),因前面例題的格式講的還不夠明確,所以練習(xí)時(shí)有點(diǎn)反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對(duì)學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。
這節(jié)課整體來說我比較滿意,對(duì)于細(xì)節(jié)上的處理。在今后的教學(xué)中我會(huì)更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會(huì)更注意教材的研讀,爭(zhēng)取上一節(jié)完美的好課。
《解方程》教學(xué)反思12
方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。
五年級(jí)數(shù)學(xué)上冊(cè)第四單元的教學(xué)內(nèi)容是“簡(jiǎn)易方程”。為了更好地實(shí)現(xiàn)小學(xué)與初中知識(shí)的接軌,新教材對(duì)簡(jiǎn)易方程的解法進(jìn)行了一次改革,將舊教材利用加減乘除法各部分之間關(guān)系解方程,改為讓學(xué)生根據(jù)天平的原理來學(xué)習(xí)方程解法,也就是利用等式的基本性質(zhì)來解方程。舉個(gè)例子:
舊教材:
x+48=127
x=127-48
依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。
新教材:
x+48=127
x+48-48=127-48
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
在實(shí)際教學(xué)中發(fā)現(xiàn),同舊教材的方法相比,現(xiàn)行教材中的這種解法,學(xué)生更容易接受,他們不必再去記“一個(gè)加數(shù)=和-另一個(gè)加數(shù)、被減數(shù)=減數(shù)+差……”這些關(guān)系式了,只需根據(jù)等式的基本性質(zhì),想辦法讓方程左邊只剩下X就行。學(xué)生很快就將這種解法運(yùn)用自如,毫不費(fèi)力。
可是,當(dāng)學(xué)到用方程解決實(shí)際問題時(shí),卻出現(xiàn)了狀況。
新教材在改革方程解法的同時(shí),有一個(gè)相應(yīng)的調(diào)整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因?yàn)槔玫仁降幕拘再|(zhì)解a-x=b、a÷x=b,方程變形的過程及算理解釋比較麻煩。然而,在列方程解決實(shí)際問題時(shí),卻不可避免地會(huì)出現(xiàn)以上兩種類型的方程。如:“一本書有65頁,王紅看了一部分后,還剩27頁。王紅已經(jīng)看了多少頁?”學(xué)生很自然就列出65—x=27這樣的方程。
如何解決這個(gè)難題?細(xì)讀教參,發(fā)現(xiàn)編者的思路是,當(dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現(xiàn)了。
我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時(shí),往往會(huì)出現(xiàn)和方程思想的'基本理念相違背的現(xiàn)象。
如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”
合理的做法應(yīng)是“設(shè)鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學(xué)生無法解這樣的方程,只能轉(zhuǎn)列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷X=8,等到解方程時(shí)才發(fā)現(xiàn)利用天平的原理沒法繼續(xù),只好改列成8X=128。
如此一來,學(xué)生怎么能充分體會(huì)方程順向思維的優(yōu)越性?
如果說用舊教材的思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,如何是好?
我只能把新舊教材兩種方法進(jìn)行互補(bǔ),告訴學(xué)生,遇到這類方程時(shí),一種解決的辦法是按減法和除法各部分之間的關(guān)系進(jìn)行解答;另一種方法就是先按等式的性質(zhì),把方程的左右邊都加或乘一個(gè)x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進(jìn)行解答。
《解方程》教學(xué)反思13
本節(jié)課中學(xué)生學(xué)習(xí)等式的性質(zhì)是沒有多大的難度的,在運(yùn)用等式的性質(zhì)進(jìn)行解方程時(shí),難度也不是很大。課本安排了不少解方程的題目,學(xué)生都能一一解決。仔細(xì)觀察課本,其實(shí)會(huì)發(fā)現(xiàn)課本上在慢慢增加根據(jù)具體情境列出方程并解方程的題目。這是本單元的難點(diǎn),這就需要讓學(xué)生根據(jù)題目中的等量關(guān)系來寫出方程。將等量關(guān)系寫出方程和學(xué)生之前根據(jù)等量關(guān)系解答是不同的。
學(xué)生不太習(xí)慣,導(dǎo)致列的`方程奇形怪狀。這里有必要深入探究方程的含義。根據(jù)上節(jié)課的學(xué)習(xí)學(xué)生知道:方程是從等式演變而來。含有字母的等式才叫作方程。換言之,方程其實(shí)是一種含有未知量的等量關(guān)系的一種表達(dá)式。我們只需要將等量關(guān)系找到再將其表達(dá)成方程即可。學(xué)生出現(xiàn)問題的原因是以往大部分的解題經(jīng)驗(yàn)所寫出的等量關(guān)系是從結(jié)果出發(fā)來寫的,一切為結(jié)果服務(wù)這樣一種逆向的思維過程。而現(xiàn)在寫出題目中的等量關(guān)系卻是從條件出發(fā)的一種正向思維。
雖然在三年級(jí)時(shí),我們學(xué)習(xí)了從條件出發(fā)和問題出發(fā)兩種不同的解題策略,但這離幫助學(xué)生形成這兩種思維還是遠(yuǎn)遠(yuǎn)不夠的。通過這樣的分析,那我們?cè)谝龑?dǎo)孩子列方程時(shí),就要從條件出發(fā),找等量關(guān)系來列方程了。先要幫助學(xué)生找出等量關(guān)系,在引導(dǎo)孩子根據(jù)等量關(guān)系表達(dá)出相應(yīng)的方程。這一點(diǎn)的學(xué)習(xí)時(shí)必須的。
《解方程》教學(xué)反思14
一、引入了天平,理解等式的性質(zhì)。
新教材的突出之處從直觀的天平入手,天平的兩邊同時(shí)加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個(gè)性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時(shí)乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長(zhǎng)遠(yuǎn)角度看,學(xué)生經(jīng)過這樣的學(xué)習(xí),對(duì)于七年級(jí)以后的后續(xù)學(xué)習(xí)減少了障礙,很好地做好了銜接。
二、兩條腳走路,解決不便的問題。
教材中有意避免了形如-x或÷x的方程的出現(xiàn),可是在實(shí)際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學(xué)生又應(yīng)如何解答呢?當(dāng)然還可以根據(jù)等式的性質(zhì)來進(jìn)行左右兩邊的化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學(xué)生對(duì)于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運(yùn)用四則運(yùn)算的內(nèi)部的.關(guān)系來解決。不要怕給了學(xué)生又一種選擇的機(jī)會(huì),這樣在用等式的性質(zhì)解決問題不方便時(shí),未嘗不是一種好的方法。
三、抓住其本質(zhì),簡(jiǎn)化方程的過程。
兩邊同時(shí)加上或減去同一個(gè)數(shù)的過程,其本質(zhì)是為什么要這么做,當(dāng)學(xué)生經(jīng)過思考發(fā)現(xiàn)這樣的過程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過程,因而可以簡(jiǎn)化一些不必要的多余過程,典型的如x+5=20,x+5-5=20+5,讓學(xué)生通過計(jì)算體驗(yàn)這樣的第二步過程實(shí)際即為x=20+5,因而可以使方程的解答變得簡(jiǎn)便。學(xué)生覺得當(dāng)然還是簡(jiǎn)便的過程值得效仿,積極性顯得非常之高。
四、確保正確率,及時(shí)進(jìn)行檢驗(yàn)。
原來的檢驗(yàn)過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個(gè)方面就會(huì)顯得不耐煩,在經(jīng)歷了一個(gè)詳細(xì)的檢驗(yàn)過程之后,然后教給學(xué)生一個(gè)簡(jiǎn)便的檢驗(yàn)方法,學(xué)生都很興奮,積極性也很高漲,而且主動(dòng)性也很好,這樣解決問題的正確率也提高了。
同時(shí),在這部分的教學(xué)期間,也有一些問題引發(fā)了個(gè)人的一些思考。
首先是學(xué)習(xí)中如何提高學(xué)生的學(xué)習(xí)規(guī)范性,方程的解答是一種規(guī)范的過程,它有一些固定的格式,例如必須寫“解:”,必須“=”上下對(duì)齊,要正確必須進(jìn)行檢驗(yàn)等,而這些都必須讓學(xué)生多進(jìn)行訓(xùn)練,多強(qiáng)化練習(xí),理解各種題型的結(jié)構(gòu)。
其次是對(duì)于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問題,可能會(huì)引起部分的的不理解,會(huì)不會(huì)與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢
《解方程》教學(xué)反思15
一、認(rèn)知基礎(chǔ)的“頑固性”
心理學(xué)研究表明,當(dāng)人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實(shí)現(xiàn)由“過程”向“對(duì)象”的轉(zhuǎn)變。在一至四年級(jí),學(xué)生都是根據(jù)四則運(yùn)算各部分之間的關(guān)系來做計(jì)算的,它既是學(xué)生十分熟悉的運(yùn)算規(guī)律,同時(shí)又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運(yùn)算,從這個(gè)角度去看,當(dāng)然也可以運(yùn)用四則運(yùn)算各部分之間的關(guān)系來做。而且,四則運(yùn)算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的,具有相對(duì)的“頑固性”,甚至在一定程度上會(huì)排斥新學(xué)的等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。
以前教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,比較兩種思路:第一種方法是把未知數(shù)x優(yōu)先從背景中篩選出來,依據(jù)四則運(yùn)算各部分之間的關(guān)系求出x的值;第二種方法用“結(jié)構(gòu)性觀點(diǎn)”去看待方程,著眼于其所表明的等量關(guān)系,體現(xiàn)了方程思想的.本質(zhì),較好地解決了中小學(xué)關(guān)于方程解法的銜接問題!稊(shù)學(xué)課程標(biāo)準(zhǔn)》也明確要求學(xué)生能“理解等式的性質(zhì),會(huì)利用等式的性質(zhì)解簡(jiǎn)單的方程”。那么,教材編排的價(jià)值是不容置疑的,即不能因?yàn)閷W(xué)生思維的輕車熟路,而忽視新知的教學(xué),忽視學(xué)生數(shù)學(xué)思想的進(jìn)一步提升。利用關(guān)系式這種方法解方程書寫較少,形式簡(jiǎn)單,但教學(xué)時(shí)總碰到差生不理解關(guān)系式也記不住關(guān)系式,因此在解方程時(shí)因想不起關(guān)系式而不會(huì)解。這幾星期的教學(xué),我發(fā)現(xiàn)孩子們還是比較喜歡學(xué)的,學(xué)得也不錯(cuò),教材利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個(gè)等式的恒等變形。教材又通過天平平衡原理過渡到等式的性質(zhì),從而利用等式的性質(zhì)教學(xué)解方程,使得解方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識(shí)到:利用等式的性質(zhì)解方程,看似麻煩,實(shí)則簡(jiǎn)單,不須思考各部分之間的關(guān)系。雖然這樣教學(xué)學(xué)生有興趣,學(xué)得不錯(cuò),但也存在局限性,如a-x=b和a÷x=b,雖然教材沒有要求解這類方程,但試卷和相應(yīng)的練習(xí)有出現(xiàn),因此,有必要特別利用一些時(shí)間給學(xué)生補(bǔ)充講解這類方程解法。我發(fā)現(xiàn)用等式性質(zhì)教這類方程,比較麻煩,學(xué)生學(xué)起來有一定難度。
二、兩種方法形式上的相似引發(fā)學(xué)生思維的惰性
第一種方法書寫較少,形式簡(jiǎn)單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡(jiǎn)寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗(yàn)已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會(huì)再去深究思路和觀念的不同,更不會(huì)創(chuàng)新解法。
方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識(shí)到:利用等式的性質(zhì)解方程,看似麻煩,實(shí)則簡(jiǎn)單,不須思考各部分之間的關(guān)系。這時(shí),教師再適時(shí)介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認(rèn)識(shí)到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。
【《解方程》教學(xué)反思】相關(guān)文章:
《解方程》教學(xué)反思05-31
解方程教學(xué)反思02-05
《解方程》的教學(xué)反思04-07
《解方程二》教學(xué)反思03-28
解方程二的教學(xué)反思02-05
解方程教學(xué)反思15篇02-25
五年級(jí)數(shù)學(xué)《解方程》教學(xué)反思(通用20篇)11-24
解方程教案04-02