五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思
作為一名人民教師,教學(xué)是重要的任務(wù)之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,教學(xué)反思要怎么寫(xiě)呢?以下是小編為大家收集的五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思,歡迎大家分享。
五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思1
學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問(wèn)題的過(guò)程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對(duì)于解比較簡(jiǎn)單的方程,學(xué)生并不陌生。
比如:x+4=7學(xué)生能夠很快說(shuō)出x=3,但是就方程的書(shū)寫(xiě)規(guī)范來(lái)說(shuō),有必要一開(kāi)始就強(qiáng)化訓(xùn)練,老師規(guī)范的板書(shū),以發(fā)揮首次感知先入為主的強(qiáng)勢(shì)效應(yīng),促進(jìn)良好的書(shū)寫(xiě)習(xí)慣的形成。對(duì)于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個(gè)理想的境界。
不難看出,學(xué)生經(jīng)歷了把運(yùn)算符號(hào)“+”看錯(cuò)成了“-”,又自行改正的過(guò)程,在這一過(guò)程中學(xué)生體驗(yàn)到了緊張、焦急、期待,成功的感覺(jué),這時(shí)的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長(zhǎng)的過(guò)程,真正落實(shí)了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中“在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心”的目標(biāo),在這個(gè)思維過(guò)程中,學(xué)生獲得了情感體驗(yàn)和發(fā)現(xiàn)錯(cuò)誤又自己解決問(wèn)題的機(jī)會(huì)。
老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的'等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵(lì)的話語(yǔ),無(wú)時(shí)無(wú)刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過(guò)程,更是一種生命交往的過(guò)程,學(xué)生有了很安全的心理空間,不然,他怎么會(huì)對(duì)老師說(shuō)“老師,我太緊張了”,這是學(xué)生對(duì)老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會(huì)有更多的愛(ài)灑向更多的學(xué)生,學(xué)生的人生歷程中就會(huì)多一份信心,多一份勇氣,多一份靈氣。
五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思2
數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來(lái)教學(xué)解方程。現(xiàn)將解方程的新舊方法舉例如下:
老方法:
x + 4 = 20
x = 20-4
依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。
新方法:
x + 4 = 20
x + 4-4=20-4
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
改革的原因(摘自教學(xué)參考書(shū)):
新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。
從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。
那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒(méi)有什么問(wèn)題? 在我的教學(xué)過(guò)程中真的出現(xiàn)了問(wèn)題 。
1、無(wú)法解如a-x=b和a÷x=b此類的方程
新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與x÷a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂“相比原來(lái)方法,思路更為統(tǒng)一”的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小學(xué)生還沒(méi)有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過(guò)程及算理解釋比較麻煩;而a÷x=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。
我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問(wèn)題。因?yàn)楫?dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更 會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。
如“3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法應(yīng)是“設(shè)桃子每千克x元”,從順向思考,列出方程為“2.5×3-5x=0.5”。然而,按新教材的.編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成“5x+0.5=2.5×3”之類的方程。又如:課本第62頁(yè)中的“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生根據(jù)“爸爸比小明大28歲”列出40-Х=28,可是無(wú)法求解,所以又轉(zhuǎn)成Х+28=40。
很明顯,第二個(gè)方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問(wèn)題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成“5x+0.5=2.5×3”“ Х+28=40”那就說(shuō)明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來(lái)解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?
我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問(wèn)題,x當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見(jiàn)、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。
2、解方程的書(shū)寫(xiě)過(guò)程太繁瑣
教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫(xiě)出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫(xiě)上的繁瑣。
因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了。
從這兩個(gè)方面來(lái)看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來(lái)解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問(wèn)題。那么,如果說(shuō)用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問(wèn)題,那我們又如何是好呢?
五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思3
人教版五年級(jí)上冊(cè)《解簡(jiǎn)易方程》這個(gè)單元中,教材是通過(guò)等式的基本性質(zhì)來(lái)解方程,這個(gè)方法雖然說(shuō)使得小學(xué)的知識(shí)與初中的知識(shí)更加的接軌,讓方程的解法更加的簡(jiǎn)單。從教材的編排上,整體難度下降,對(duì)學(xué)生以后的發(fā)展是有利的。但是教材中故意避開(kāi)了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時(shí)也會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒(méi)有任何問(wèn)題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運(yùn)算各部分的關(guān)系來(lái)解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的`列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時(shí),學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見(jiàn)加法就減,看見(jiàn)減法就加,看見(jiàn)乘法就除,看見(jiàn)除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運(yùn)用的學(xué)生很少,對(duì)大部分學(xué)生來(lái)說(shuō)越教越是糊涂,把本來(lái)剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時(shí)故意回避嗎?
在教學(xué)列方程解加減乘除解決問(wèn)題第一課時(shí),我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實(shí)際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長(zhǎng)高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個(gè)量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問(wèn):這三個(gè)量之間有怎樣的相等關(guān)系呢?
去年的身高+長(zhǎng)高的8cm=今年的身高
今年的身高-去年的身高=長(zhǎng)高的8cm
今年的身高-長(zhǎng)高的8cm=去年的身高
你能根據(jù)這三個(gè)數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。
X+8=152 152-x=8 152-8=x
追問(wèn)學(xué)生你對(duì)哪個(gè)方程有想法?學(xué)生一致認(rèn)為對(duì)第三個(gè)方程有想法?生1:這個(gè)根本沒(méi)有必要寫(xiě)x,因?yàn)橹苯涌梢杂?jì)算了。生2:x不寫(xiě),就是一個(gè)算式,直接可以算了。我肯定到:列算式解決實(shí)際問(wèn)題時(shí),未知數(shù)始終作為一個(gè)“解決的目標(biāo)”不參加列式運(yùn)算,只能用已知數(shù)和運(yùn)算符號(hào)組成算式,所以這樣的x就沒(méi)有必要。接著讓學(xué)生解這兩個(gè)方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來(lái)的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無(wú)法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個(gè)數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實(shí)減法是加法的逆運(yùn)算,是有加法轉(zhuǎn)變過(guò)來(lái)。因此,我們?cè)谒伎紨?shù)量關(guān)系時(shí),只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個(gè)字母(如x)為代表和已知數(shù)一起參加列式運(yùn)算x+b=a,體會(huì)列方程解決問(wèn)題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問(wèn)題的方法——列方程解決問(wèn)題。
接著用同樣的教學(xué)方法探究bx=a的解決問(wèn)題。
我這樣的教學(xué)不知道是否合理?其實(shí)小學(xué)生在學(xué)習(xí)加減法、乘除法時(shí),早就對(duì)四則運(yùn)算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗(yàn)。要不要運(yùn)用等式的性質(zhì)對(duì)學(xué)生再加以概括呢?
五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思4
新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法雖然說(shuō)讓方程的'解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個(gè)加數(shù)=和-另一個(gè)加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個(gè)因數(shù)=積÷另一個(gè)因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡(jiǎn)單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)等式不變,和等式的兩邊同時(shí)乘或除以同一個(gè)數(shù)(0除外),等式不變進(jìn)行解方程的 新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來(lái)也有規(guī)律可循了。于是,我在教學(xué)時(shí)充分地利用天平實(shí)物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡(jiǎn)易方程時(shí)學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)減(或加)同一個(gè)數(shù),未知數(shù)乘(或除)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)除(或乘)同一個(gè)數(shù)即可。一般不會(huì)出現(xiàn)運(yùn)算符號(hào)弄錯(cuò)的現(xiàn)象了。
為新課奠定了基礎(chǔ)。在突破重難點(diǎn)時(shí),我設(shè)計(jì)借助天平理解解方程的過(guò)程,當(dāng)學(xué)生根據(jù)例1圖意列出方程X+3=9時(shí),我把皮球換成方格出現(xiàn)在大屏幕上時(shí),問(wèn)學(xué)生:“要得出X的值,在天平上應(yīng)如何操作?”由于問(wèn)題提的不符合學(xué)生實(shí)際學(xué)習(xí)情況,學(xué)生一時(shí)不知如何回答。我連忙糾正問(wèn)道:“天平左邊有一個(gè)X和一個(gè)3,怎么讓方程左邊就剩下X呢?”學(xué)生馬上回答:“減去3!睅煟骸疤炱接疫呉矐(yīng)該怎么辦?”生:“也減去3.”師:“為什么?”生:“天平的兩邊同時(shí)減去相同的數(shù),天平仍然保持平衡!蔽乙騽(shì)利導(dǎo)地使學(xué)生學(xué)習(xí)解方程的方法及書(shū)寫(xiě)格式。課堂練習(xí)時(shí)間也不充裕,致使擴(kuò)展思維題學(xué)生沒(méi)時(shí)間去思考,沒(méi)有達(dá)到預(yù)想的課堂效果。一節(jié)課雖然結(jié)束了,卻給我留下了難忘的印象,它將永遠(yuǎn)警示著我認(rèn)真鉆研教材,備好每一節(jié)課。
五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思5
新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法雖然說(shuō)讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑
1、從教材的編排上,整體難度下降,有意避開(kāi)了,形如:45-x=23等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來(lái)解方程,但用這樣的方法來(lái)解方程之后,書(shū)本不再出現(xiàn)x前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出x在后面的方程,我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的`學(xué)生來(lái)說(shuō),我們會(huì)讓他們嘗試接受解答x在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上x(chóng),再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、 內(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充x前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免x前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。
【五年級(jí)數(shù)學(xué)上冊(cè)解簡(jiǎn)易方程教學(xué)反思】相關(guān)文章:
解簡(jiǎn)易方程教學(xué)反思04-07
五年級(jí)上冊(cè)數(shù)學(xué)《解簡(jiǎn)易方程》教學(xué)反思04-12
五年級(jí)上冊(cè)數(shù)學(xué)解簡(jiǎn)易方程教學(xué)反思04-07
五年級(jí)數(shù)學(xué)《解簡(jiǎn)易方程》教學(xué)反思03-30
五年級(jí)上冊(cè)簡(jiǎn)易方程教學(xué)反思03-10
五年級(jí)數(shù)學(xué)上冊(cè)《簡(jiǎn)易方程》教學(xué)反思04-05
簡(jiǎn)易方程教學(xué)反思02-26