- 相關(guān)推薦
一元二次方程的概念教學(xué)反思
作為一位優(yōu)秀的老師,我們要有一流的教學(xué)能力,寫教學(xué)反思可以快速提升我們的教學(xué)能力,來參考自己需要的教學(xué)反思吧!下面是小編幫大家整理的一元二次方程的概念教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
一元二次方程的概念教學(xué)反思1
每一個(gè)數(shù)學(xué)概念都不是孤立存在的,都存在于一個(gè)相應(yīng)的系統(tǒng)中。把某一概念置于它所存在的相應(yīng)系統(tǒng)中進(jìn)行比較,引出新概念,不但能達(dá)到對概念的深刻理解,還能深化和發(fā)展概念。本課教學(xué)時(shí),我將一元二次方程與一元一次方程進(jìn)行類比,引出一元二次方程的概念。在類比的過程中既加深了對一元二次方程概念的理解又分析了這兩種方程的聯(lián)系和區(qū)別。
在概念的理解上,教學(xué)時(shí)我從學(xué)生實(shí)際出發(fā),選擇一些簡單的鞏固練習(xí)來辨認(rèn)、識(shí)別,幫助學(xué)生掌握概念的外延和內(nèi)涵;通過變式深化對概念的理解;通過新舊概念的`對比,分析概念的矛盾運(yùn)動(dòng)。
總之,概念課的引入是概念課教學(xué)的前提,概念的理解是概念課教學(xué)的核心。重視概念教學(xué),運(yùn)用多種方式、方法調(diào)動(dòng)學(xué)生感官、思維的積極性,學(xué)好用好概念是學(xué)好一切知識(shí)的基礎(chǔ)和關(guān)鍵。
一元二次方程的概念教學(xué)反思2
一元二次方程是學(xué)生學(xué)習(xí)了一元一次方程和二元一次方程組之后所接觸的第三類方程,所以對于它的概念,學(xué)生很容易理解。通過這節(jié)課的教學(xué)我有如下幾點(diǎn)感想:
一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識(shí)的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺得意外,讓學(xué)生跳一跳就可以摘到桃子。
二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動(dòng)來展開教學(xué),發(fā)展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。
三、整節(jié)課的設(shè)計(jì)以落實(shí)雙基為起點(diǎn),培養(yǎng)學(xué)生獨(dú)立思考的能力,重視知識(shí)和產(chǎn)生過程,關(guān)注人的發(fā)展。無論是教學(xué)環(huán)節(jié)設(shè)計(jì),還是作業(yè)的布置上,我注意分層次教學(xué),讓每一個(gè)學(xué)生都得到不同的發(fā)展
四、為了真正做到有效的合作學(xué)習(xí),我在活動(dòng)中大膽地讓學(xué)生自主完成。先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時(shí)就有目的,就會(huì)事半功倍。也讓不同層次的'學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。
不足之處:引入方面有待加強(qiáng),不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時(shí)間還不夠。
一元二次方程的概念教學(xué)反思3
對于一元二次方程,學(xué)生在前面已經(jīng)學(xué)習(xí)過一元一次方程、二元一次方程和分式方程的知識(shí),也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。是初中教材中一個(gè)重要的內(nèi)容,通過這節(jié)課的教學(xué)我有如下幾點(diǎn)體會(huì):
第一、以問題為主線,解放學(xué)生的身心,激發(fā)學(xué)生的靈感;體現(xiàn)“自主-----合作-----探究”的學(xué)習(xí)方式。比如引入部分采用同一背景的三個(gè)小問題引入顯得整體性和連貫性較強(qiáng)。從三個(gè)小問題中得出方程后問2(x-1)+20=100是我們曾學(xué)過的哪類方程?再問其他的方程也是一元一次方程嗎?繼續(xù)
問:那它們和一元一次方程有什么相同點(diǎn)和不同點(diǎn)?接著啟發(fā):如果給它們命名,將怎么命名?這樣很自然就引入課題。再比如,為鞏固一元二次方程的概念設(shè)置6個(gè)方程,從中選出一元二次方程。
再比如過渡到講一元二次方程的一般形式時(shí),將上題中最后一個(gè)小題追問:你是怎么判斷的?這樣的使一元二次方程美觀嗎?從數(shù)學(xué)的整潔美的角度讓學(xué)生明白需要把方程整理為左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式。對整理后的四個(gè)方程總結(jié):任何關(guān)于x的一元二次方程都可以化成一般形式:ax2+bx+c=0,問a能取任何數(shù)嗎?為什么不能取零?b 、c可以為零嗎?進(jìn)而滲透了從特殊到一般的數(shù)學(xué)思想。
第二、本節(jié)課知識(shí)的呈現(xiàn)作了重大調(diào)整,不是以講解為主方式也不是以單一的.知識(shí)為線條,而是在突出數(shù)學(xué)知識(shí)的同時(shí),將數(shù)學(xué)知識(shí)和結(jié)論溶于數(shù)學(xué)活動(dòng)之中,這樣學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的過程就成了進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的過程,成了“做學(xué)問”的過程。在這樣的探究學(xué)習(xí)過程中,學(xué)生得到的數(shù)學(xué)知識(shí)是通過自己實(shí)驗(yàn)、觀察、討論、歸納得到的。比如講一元二次方程的一般形式時(shí)不是我們硬塞給學(xué)生的,而是從鞏固概念環(huán)節(jié)的6個(gè)方程中的最后一元二次方程作為銜接入口,現(xiàn)在要給它們洗漱整理后統(tǒng)一著裝,要求使方程的左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式,這樣的連接比較自然。在這個(gè)整理活動(dòng)之中學(xué)生親自體驗(yàn)、觀察、歸納,討論出一元二次方程的一般形式ax2+bx+c=0。再比如過度到一元二次方程解的概念時(shí),利用了前面練習(xí)的最后一個(gè)小題的方程,告訴學(xué)生老師的年齡就是這個(gè)方程中x的取值,這樣既引出了解的概念,也激發(fā)了學(xué)生解決問題的興趣。
當(dāng)然本節(jié)課還有許多不足之處和困惑:
一、情景創(chuàng)設(shè)時(shí)的4個(gè)例子中,最后一個(gè)與前面三個(gè)沒有任何聯(lián)系,當(dāng)時(shí)沒有認(rèn)真考慮設(shè)置與前面類似的背景。說明備課時(shí)還需認(rèn)真,必須為學(xué)生的學(xué)服務(wù),來不得半點(diǎn)馬虎。
二、引出一元二次方程的一般形式時(shí),說是為了方程的整潔美,我感覺不妥,應(yīng)該怎么解釋,還需要同行與專家的指點(diǎn)。
三、一元二次方程的一般形式中的a為什么不能等于0,我覺得教學(xué)中缺少學(xué)生的自我領(lǐng)悟,也就是缺少一個(gè)合理的學(xué)生活動(dòng)的過程。
四、小結(jié)時(shí)比較死板,沒起到畫龍點(diǎn)睛的作用。
一元二次方程的概念教學(xué)反思4
配方法解方程教學(xué)反思
本節(jié)共分3課時(shí),第一課時(shí)引導(dǎo)學(xué)生通過轉(zhuǎn)化得到解一元二次方程的配方法,第二課時(shí)利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時(shí)通過實(shí)際問題的解決,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識(shí)和能力,同時(shí)又進(jìn)一步訓(xùn)練用配方法解題的技能。
在教學(xué)中最關(guān)鍵的是讓學(xué)生掌握配方,配方的對象是含有未知數(shù)的二次三項(xiàng)式,其理論依據(jù)是完全平方式,配方的方法是通過添項(xiàng):加上一次項(xiàng)系數(shù)一半的平方構(gòu)成完全平方式,對學(xué)生來說,要理解和掌握它,確實(shí)感到困難,,因此在教學(xué)過程中及課后批改中發(fā)現(xiàn)學(xué)生出現(xiàn)以下幾個(gè)問題:
在利用添項(xiàng)來使等式左邊配成一個(gè)完全平方公式時(shí),等式的右邊忘了加。
在開平方這一步驟中,學(xué)生要么只有正、沒有負(fù)的,要么右邊忘了開方。
當(dāng)一元二次方程有二次項(xiàng)的系數(shù)不為1時(shí),在添項(xiàng)這一步驟時(shí),沒有將系數(shù)化為1,就直接加上一次項(xiàng)系數(shù)一半的平方。
因此,要糾正以上錯(cuò)誤,必須讓學(xué)生多做練習(xí)、上臺(tái)表演、當(dāng)場講評,才能熟練掌握。
通過本節(jié)課的教學(xué),使我真正認(rèn)識(shí)到了自己課堂教學(xué)的成功與失敗。對我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)勛约簩@節(jié)課的反思。
本節(jié)課的重點(diǎn)主要有以下3點(diǎn):
1. 找出a,b,c的相應(yīng)的數(shù)值
2. 驗(yàn)判別式是否大于等于0
3. 當(dāng)判別式的數(shù)值符合條件,可以利用公式求根.
在講解過程中,我沒讓學(xué)生進(jìn)行(1)(2)步就直接用公式求根,第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯(cuò)誤較多.
1. a,b,c的符號問題出錯(cuò),在方程中學(xué)生往往在找某個(gè)項(xiàng)的系數(shù)時(shí)總是丟掉前面的'符號
2. 求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯(cuò)很多.
其實(shí)在做題過程中檢驗(yàn)一下判別式著一步單獨(dú)挑出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做著一步在到求根公式時(shí)可以把數(shù)值直接代入.在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求收到更好的教學(xué)效果
3、板書不太理想。板書可以說在課堂教學(xué)也起關(guān)鍵作用,它可以幫學(xué)生溫習(xí)本課的內(nèi)容,而我許多本該板書的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個(gè)內(nèi)容時(shí),這些內(nèi)容也就不會(huì)再出現(xiàn),只給學(xué)生瞬間的停留,這樣做也有欠妥當(dāng)。
4、本節(jié)課沒有激情,學(xué)習(xí)的積極性調(diào)動(dòng)不起來,對學(xué)生地鼓勵(lì)性的語言過于少,可以說幾乎沒有。
分解因式法解一元二次方程的教學(xué)反思
教學(xué)時(shí)可以讓學(xué)生先各自求解,然后進(jìn)行交流并對學(xué)生的方法與課本上對小穎、小明、小亮的方法進(jìn)行比較與評析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡便的方法。利用分解因式法解題時(shí)。很多同學(xué)在解題時(shí)易犯的錯(cuò)誤是進(jìn)行了非同解變形,結(jié)果丟掉一根,對此教學(xué)時(shí)只能結(jié)合具體方程予以說明,另外,本節(jié)課學(xué)生易忽略一點(diǎn)是“或”與“且”的區(qū)別,應(yīng)做些說明。
對于學(xué)有余力的學(xué)生可以介紹十字相乘法,它對二次三項(xiàng)式分解因式簡便。
通過以上的反思,我將在以后的教學(xué)中對自己存在的優(yōu)點(diǎn)我會(huì)繼續(xù)保持,針對不足我將會(huì)不斷地改進(jìn),使自己的課堂教學(xué)逐步走上一個(gè)新的臺(tái)階。
一元二次方程的概念教學(xué)反思5
學(xué)生對一元二次方程概念的理解基本結(jié)束了。我認(rèn)為數(shù)學(xué)教學(xué)要以提高學(xué)生的數(shù)學(xué)素質(zhì)為指導(dǎo)思想,以學(xué)生積極參與教學(xué)活動(dòng)為目標(biāo),以探索概念的過程和展開思維分析為主線,在課堂教學(xué)中,教師充分調(diào)動(dòng)學(xué)生的'一切因素,讓學(xué)生在和諧、愉悅的氛圍中獲取知識(shí)、掌握方法。
探索新課改下的數(shù)學(xué)課堂教學(xué)模式,優(yōu)化數(shù)學(xué)課堂教學(xué)結(jié)構(gòu),還是一個(gè)長期而艱苦的工作。我堅(jiān)信只要我們不斷地創(chuàng)新,大膽地探索,就一定能取得好的教學(xué)效果。
【一元二次方程的概念教學(xué)反思】相關(guān)文章:
一元二次方程教學(xué)反思05-17
實(shí)際問題與一元二次方程教學(xué)反思04-02
數(shù)學(xué)函數(shù)的概念教學(xué)反思03-06
實(shí)際問題與一元二次方程教學(xué)反思7篇04-04