分式教學(xué)反思
作為一位優(yōu)秀的老師,我們要有一流的課堂教學(xué)能力,在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,優(yōu)秀的教學(xué)反思都具備一些什么特點呢?以下是小編幫大家整理的分式教學(xué)反思,希望能夠幫助到大家。
分式教學(xué)反思1
分式一章的第一課時教學(xué),利用引例列出的代數(shù)式進行歸納比較,得出分式的概念,抓住分式概念最本質(zhì)的特征“分母含有字母”,從而研究:分式有意義無意義的條件、分式的值為零的條件、分式的值為正數(shù)負數(shù)整數(shù)等條件,解決各種數(shù)學(xué)問題。
在解決分式的值為零,分子為零且分母不為零的題型時,有考慮字母的值的取舍的題目,采用學(xué)生在黑板上的說理方法比我原來的方法更有效,學(xué)生的方法是:由分子x2-4=0求得x=2及x=-2,再分別將求得的`字母的值代入分母進行計算,使分母為零的情況舍去,使分母不為零的保留,進行這樣的取舍檢驗,對于分母不是一次多項式的情況就能順利地區(qū)分出來,學(xué)生使用的這個方法好。
在轉(zhuǎn)化求解時,發(fā)現(xiàn)學(xué)生對一元一次不等式組的解題還是比較生疏的,為了使學(xué)生全面提高學(xué)習(xí)效果,在遇有類似情況時還是復(fù)習(xí)一下更有效果。學(xué)習(xí)的主體是學(xué)生,不是課堂的花架子。
對于-a2-1一定為負數(shù),也同樣要師生協(xié)作,生生協(xié)作討論研究,確保全體學(xué)生理解和靈活應(yīng)用。
對于題目:整數(shù)x取何值時,分式4/x-1的值為整數(shù),學(xué)生的理解和解題也是一個難點。
由于學(xué)生沒有課本,我們的課堂學(xué)案應(yīng)設(shè)計的更具實用性,課堂知識內(nèi)容的表達要更加便于學(xué)生理解和接受。
分式教學(xué)反思2
通分教學(xué)反思
通過本節(jié)課的教學(xué),給我感悟最深的是,有些教學(xué)內(nèi)容學(xué)生自己能夠去解決的`教師用不著去教,應(yīng)該充分發(fā)揮學(xué)生自主探索的"作用!巴ǚ帧边@節(jié)內(nèi)容,本身比較簡單,它的簡單之處,不僅僅在于教材本身,而是學(xué)生先前已有“分數(shù)的基本性質(zhì)”,“求最小公倍數(shù)”以及“分數(shù)大小比較”這些知識底蘊。因此,教學(xué)中,我先通過復(fù)習(xí)引新后,然而放手讓學(xué)生自己去探索如何去“通分”,理解什么是“通分”。例如:先讓學(xué)生做一做,后在小組中議一議,再翻開書看一看,這樣學(xué)自然就掌握了什么叫“通分”,怎樣去“通分”,教師只是點撥一下“通分”的關(guān)鍵一步在哪里。值得注意的地方在哪里?通分中應(yīng)用了哪些知識,這就可以了,這樣下來,學(xué)生學(xué)得主動,學(xué)得輕松,得益實惠,效果顯著。當(dāng)然,在比較異分母分數(shù)的大小時,學(xué)生可以選擇不同的方法,比如化成分子相同或化成小數(shù)也可以!
分式教學(xué)反思3
通過本周的教學(xué),學(xué)生已基本掌握了分式的有關(guān)知識,并且獲得了學(xué)習(xí)代數(shù)知識的常用方法,感受到代數(shù)學(xué)習(xí)的實際應(yīng)用價值。下面是我在教學(xué)中的幾點體會:
一、深挖教材,合理滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生各種能力。
本章可以讓學(xué)生通過觀察、類比、猜想、嘗試等活動學(xué)習(xí)分式的運算法則,發(fā)展他們的合情推理能力,所以教學(xué)時重點應(yīng)放在對法則的探索過程上。一定要讓學(xué)生充分活動起來。在觀察、類比、猜想、嘗試當(dāng)一系列思想活動中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時還要關(guān)注學(xué)生對算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達能力、運算能力和有理的思考問題能力?墒俏以谥R的傳授上并沒有注重探索、類比法則,而重在對分式四則運算法則的運用和分式方程的運用上,沒有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類似事情的.發(fā)生。
二、著力體現(xiàn)建構(gòu)主義思想,展現(xiàn)數(shù)學(xué)的連續(xù)性與延展性。
本部分內(nèi)容應(yīng)建立在學(xué)生對分數(shù)的認識的基礎(chǔ)上,通過已有的知識進行建構(gòu),適當(dāng)?shù)膶Ρ饶軜O大提高學(xué)生的認知質(zhì)量。
分式運算是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運算量與題目的難度,重點應(yīng)放在對運算過程推理的理解上。
冪的運算,前期已經(jīng)掌握了正整數(shù)指數(shù)冪的運算,本次應(yīng)拓展到整數(shù)指數(shù)冪的運算,注意銜接過程。
另外,對《教材》上關(guān)于分式的具體問題一定要重視,并關(guān)注學(xué)生在這些具體活動中的投入程度,看他們能否積極主動地參與,其次看學(xué)生在這些活動中的思維發(fā)展水平——能否獨立思考,能否用數(shù)學(xué)語言表達自己的想法,能否反思自己的思維過程,進而發(fā)現(xiàn)新的問題。
分式教學(xué)反思4
本節(jié)課教學(xué)內(nèi)容較少。上課時先讓學(xué)生帶著四個問題進行閱讀,學(xué)生在閱讀過程中,能正確的解決前三個問題。在處理第四個問題時,我先通過計算( )÷3=0,遷移到( )÷x=0,從而得出值為零的條件。在練習(xí)中我設(shè)計了分式(|x|—1) / (x+1) 值為零的條件,再進一步強調(diào)分式有意義的'大前提條件才有值為零,大多數(shù)同學(xué)都能理解并掌握。
分式教學(xué)反思5
不同于整式運算先學(xué)加減,再學(xué)乘除,分式的運算先學(xué)乘除,再學(xué)加減。因為分式的加減包括同分母分式的加減和異分母分式的加減,而無論哪一種運算其結(jié)果都不可能避免得要進行約分;異分母分式的加減要先通分,再加減,可見分式的加減是分式乘除的再鞏固和再應(yīng)用。本節(jié)課先學(xué)習(xí)了分式加減中的同分母分式與異分母分式相加減,不涉及混合運算,主要讓學(xué)生們理解算理,明確運算順序(先乘方、再乘除、最后加減)和每一步的算理和算法。
在本節(jié)課的教學(xué)過程中要進行二次備課,因為要密切關(guān)注孩子們的學(xué)情變化,及時點播與引導(dǎo),以達到清晰思路,準確運算的`目的。在教學(xué)過程中有以下幾點需要改進與糾正:
1,本節(jié)課課件使用量有點多,孩子們對運算的處理過程印象不夠深,應(yīng)該多板書;
2、教師講解多,基于怕孩子們學(xué)不會的心理,總是反復(fù)強調(diào)算理和運算過程,顯得課堂上老師講的過多,孩子主體性得到壓制;
3、孩子們板演少,沒有暴露出運算過程中的缺點,也就沒辦法及時糾正;
4、教師板演不公正,需要加強練習(xí);
5、講課的內(nèi)容有點多,孩子們接受比較吃力。
對于以上的教學(xué)過程中存在的問題,我已經(jīng)進行過深刻的反思,在日后的教學(xué)中堅決克服以上缺點,力爭節(jié)節(jié)課讓孩子們都能輕松聽懂,明白算理。
分式教學(xué)反思6
本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進上步加深對知識的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時需要花費很長時間,學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時間。
教學(xué)上應(yīng)多用類比的方法,與分數(shù)進行類比教學(xué),使學(xué)生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的'聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。
在教學(xué)過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認知規(guī)律。
2、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。
3、時間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過多,以致總結(jié)過于匆忙。
分式教學(xué)反思7
《分式》一章檢測結(jié)果出來了,學(xué)生成績很不理想。學(xué)生們很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。
一是分式的運算錯的較多。分式加減法主要是當(dāng)分子是多項式時,如果不把分子這個整體用括號括上,容易出現(xiàn)符號和結(jié)果的錯誤。所以我們在教學(xué)分式加減法時,應(yīng)教育學(xué)生分子部分不能省略括號。其次,分式概念運算應(yīng)按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。 二是分式方程也是錯誤重災(zāi)區(qū)。
。ㄒ唬┦窃龈x模糊,對此,我對增根的'概念進行深入淺出的闡述,
、旁龈欠质椒匠痰娜シ帜负蠡傻恼椒匠痰母,但不是原方程的根; ⑵增根能使最簡公分母等于0;
。ǘ┦墙夥质椒匠痰牟襟E不規(guī)范,大多數(shù)同學(xué)缺少“檢驗”這一重要步驟,不能從解整式方程的模式中跳出來;
。ㄈ┦橇蟹质椒匠体e誤百出。
針對上述問題,我從基礎(chǔ)知識和題型入手,用類比的方法講解,與列整式方程一樣,先分析題意,準確找出應(yīng)用題中數(shù)量問題的相等關(guān)系,恰當(dāng)?shù)卦O(shè)出未知數(shù),列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。
《分式》一章在教學(xué)上應(yīng)多用類比的方法,與分數(shù)進行類比教學(xué),使學(xué)生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。
分式教學(xué)反思8
本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。
下面結(jié)合教學(xué)過程談?wù)勛约旱膸c感悟:
一、知識鏈接部分我設(shè)計了分式有無意義和找?guī)捉M分式的最簡公分母,幫助學(xué)生回憶舊知識,并且為本節(jié)課解分式方程掃清障礙。
反思:在這個環(huán)節(jié)里,出現(xiàn)了一個問題,就是對學(xué)生估計過高,尤其是最簡公分母的找法中下游的學(xué)生把舊知識忘了,造成浪費了課上的時間。
二、由課本中的百米賽跑的應(yīng)用題引出分式方程的概念。我把課本中的閱讀和一起探究改為幾個小問題讓學(xué)生自主探究然后小組內(nèi)交流討論。由于學(xué)生對于應(yīng)用題的掌握太差,造成在這個環(huán)節(jié)浪費了太多的時間。
反思:因為本節(jié)課的重點和難點是解分式方程,所以在以后的教學(xué)中我個人認為這一部分應(yīng)該不用。改為解簡單的整式方程,再給出幾個分式方程讓學(xué)生自己判斷直接得出分式方程的意義,節(jié)省出時間讓學(xué)生重點學(xué)習(xí)和練習(xí)解分式方程。本節(jié)課值得欣喜的是四班的優(yōu)生反應(yīng)靈敏,
四、讓學(xué)生自學(xué)課本例一,也就是解分式方程,分析課本做法的依據(jù),和自己的'做法是在否一致,會用課本的方法解題。看完后,我讓學(xué)生自己做到導(dǎo)綱上。很多同學(xué)看完后還不是很理解,所以,我又讓小組自己討論了一下,弄明白如何做題。最后,我在黑板上板書了例題,然后,讓學(xué)生將自己的糾正一下。
反思:這個內(nèi)容是這節(jié)的重難點,由于前面已經(jīng)做過鋪墊,讓學(xué)生自己嘗試解過分式方程,所以,在這里我設(shè)想的是學(xué)生看完課本,明白教材的做法,自己會運用同樣的方法解決分式方程。但是,在實際的操作過程中,發(fā)現(xiàn)一個問題,同學(xué)們并沒有真正理解教材時怎么處理的,他們被第二環(huán)節(jié)中自己的做法禁錮住了,很多同學(xué)都先通分。通分很好,但通分的目的還是為了去分母。這點我沒有強調(diào)到位。同時,檢驗的過程我沒有板書在黑板,只是口頭強調(diào)了一下,致使很多學(xué)生印象不深,沒有進行檢驗。
糾正措施:重點強調(diào)化分式方程為整式方程的依據(jù)和做法。就這一步,安排幾個題進行專門訓(xùn)練,小組合作,直到每個組員都能找到最簡公分母,并會去掉分母為止。將第二課時提到這節(jié)點撥,在這節(jié)就讓學(xué)生明白分式方程為何要檢驗,從開始就讓學(xué)生養(yǎng)成檢驗的好習(xí)慣。
五、歸納解分式方程的一般步驟。根據(jù)上面的解題過程,小組總結(jié)出解題步驟。(在提示中,學(xué)生初步了解了大體步驟)
六、自學(xué)課本例二,弄明白后做到導(dǎo)綱上。
。ㄟ@個環(huán)節(jié)設(shè)置的目的是讓學(xué)生進一步熟悉分式方程的解法。注意一些細節(jié)問題。)
七、鞏固練習(xí)。做導(dǎo)綱四道題。小組批閱。
八、總結(jié)這節(jié)課的知識。(由于前面進行不是很順利,總結(jié)有些匆忙)
總體反思
這節(jié)課是一堂新授課。因此,讓學(xué)生對知識有透徹的理解是最重要的。我們的導(dǎo)綱也設(shè)置了很多的環(huán)節(jié)來引導(dǎo)學(xué)生,提高學(xué)生的學(xué)習(xí)興趣。
本節(jié)課的關(guān)鍵是如何過渡,究竟是給學(xué)生一個完全自由的空間還是讓學(xué)生在老師的引導(dǎo)下去完成,“完全開放”符合設(shè)計思路,符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),因此,先講解,做示范,再練習(xí)更好些。
在教學(xué)過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,難度有些高,沒有達到原來設(shè)想的調(diào)動積極性的作用。應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認知規(guī)律。
2、由于經(jīng)驗不足,隨機應(yīng)變的能力有些欠缺,對在教學(xué)中出現(xiàn)的新問題,應(yīng)對的不理想,沒有立刻采取有效措施解決問題。例如,在復(fù)習(xí)整式方程時,學(xué)生并不像想象中對整式方程解題過程很了解,我就引導(dǎo)大家一起復(fù)習(xí)了一下,在這里,如果再臨時出幾個題目鞏固一下,效果也許更好些。
3、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,在看例一的過程中,每一步的依據(jù)都進行了講解,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。同時,通過板書示范分式方程的解題。
4、時間掌握不夠。備學(xué)生不夠充分,導(dǎo)致突發(fā)事件過多,時間被浪費了,以致總結(jié)過于匆忙。
這次的課讓我感觸頗深。在各位老教師無私地指導(dǎo)和細心地講評中,我更看到了自己的不足,在今后的教學(xué)中,我會多思考,充分的將“學(xué)生備好”,多積累經(jīng)驗,向老教師請教,培養(yǎng)自己應(yīng)對突發(fā)情況的能力,做個成功的“引導(dǎo)者”。
分式教學(xué)反思9
該節(jié)內(nèi)容屬于北師大版八年級數(shù)學(xué)下冊第三章《分式》,本節(jié)主要討論分式的加減法運算法則。
為了完成教學(xué)目標(biāo),首先通過行程問題引入分式的加減運算,讓學(xué)生感受到數(shù)學(xué)和生活的聯(lián)系,加強學(xué)習(xí)分式加減法的必要性。既體現(xiàn)了加減運算的意義,又讓學(xué)生經(jīng)歷了從實際問題建立分式模型的過程,發(fā)展學(xué)生有條理的思考及代數(shù)表達能力。
為了突出重點從簡單的情況入手,低起點,順應(yīng)著學(xué)生的認知過程,遞進式的.設(shè)置臺階,使學(xué)生利用類比的方法自然獲得同分母分式加減運算的法則。在此基礎(chǔ)上,引導(dǎo)學(xué)生探索異分母分式的加減運算,得到異分母分式加減法運算的法則。同時,讓學(xué)生嘗試用式子表述法則,培養(yǎng)他們的表達能力。在運用法則的環(huán)節(jié)上,無論是例題還是練習(xí)都以學(xué)生為中心,給學(xué)生充分的時間去運算,去暴露問題,不拘泥于形式的討論、合作,可以發(fā)現(xiàn)學(xué)生不同的思路,鍛煉和培養(yǎng)他們的發(fā)散思維能力,為后面的教學(xué)提供較好的對比分析材料,使學(xué)生留下深刻的印象。
1。初步完成了教學(xué)目標(biāo),突出了重點,層層推進,突破難點,然后放手讓學(xué)生去猜想同分母分式的加減法法則,嘗試著去解決問題,從分數(shù)加減法法則類比出分式的加減法法則,同時引導(dǎo)了學(xué)生把一個實際問題數(shù)學(xué)化。
2。以討論的形式呈現(xiàn)給學(xué)生例題,讓學(xué)生去感受體驗,學(xué)生興趣高漲。每一個層次的練習(xí)完成之后讓學(xué)生去總結(jié)一下在解題過程中的收獲,在此基礎(chǔ)上引導(dǎo)學(xué)生發(fā)現(xiàn)解題技巧,通過分析題目的顯著特點,來靈活運用方法技巧解決問題。
3。是體會到一節(jié)課的科學(xué)設(shè)計不僅對一節(jié)課的成敗取著決定作用,更重要的是對學(xué)生數(shù)學(xué)思想的建立和數(shù)學(xué)方法的掌握更為重要,科學(xué)的設(shè)計,有利于充分的挖掘?qū)W生的數(shù)學(xué)潛能,突破難點,事半而功倍,有利于數(shù)學(xué)學(xué)習(xí)的深化。
4。創(chuàng)造性的使用教材,教材只是為我們提供最基本的教學(xué)素材,完全可以根據(jù)學(xué)生的實際情況進行適當(dāng)調(diào)整。由易到難,實在不行,再講一節(jié)習(xí)題課,夯實基礎(chǔ)。否則后面的分式應(yīng)用題很難突破。
5。在小組討論時,應(yīng)該留給學(xué)生充分的獨立思考時間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)多注意對困難學(xué)生的幫助。
分式教學(xué)反思10
通過復(fù)習(xí)同分母異分母分數(shù)的加減計算類比學(xué)習(xí)分式的加減運算以分式的通分(分母為異分母的情況)作為預(yù)備知識檢測,再到學(xué)生自主學(xué)習(xí)所完成的基礎(chǔ)練習(xí)題及熟練法則,通過讓學(xué)生板演計算過程后出現(xiàn)的問題(分子的加減,去括號問題及分式的最簡化等)給予講解及問題的討論。最后是課堂練習(xí)鞏固和小結(jié)作業(yè)布置。
在授課結(jié)束后發(fā)現(xiàn)學(xué)生對于同分母的分式的加減運算掌握得比較好但是對于異分母的分式加減就掌握得不是很理想,很多學(xué)生對于分式的通分還很不熟練,也有學(xué)生對于計算結(jié)果應(yīng)該為最簡分式理解不夠總是無法化到最簡的形式。
分式的加減法上完后列舉了一道加減混合運算題,在講解時結(jié)合加減混合運算法則進行復(fù)習(xí),分式的加減混合運算不同的是分母或者分子當(dāng)中如果有出現(xiàn)可以因式分解的應(yīng)該先進行因式分解,異分母的分式應(yīng)先進行通分化為同分母再進行計算,除法應(yīng)轉(zhuǎn)化為乘法。并且計算的.最終結(jié)果應(yīng)該為最簡分式的形式,在計算時應(yīng)先觀察分式的特點從而分析是不是可以結(jié)合乘法的分配律進行計算從而達到化繁為簡的目的。
分式教學(xué)反思11
通分一課的教學(xué)目標(biāo)是讓學(xué)生理解通分的意義和掌握通分的方法。它是分式基本性質(zhì)的一種應(yīng)用,是在學(xué)生已經(jīng)掌握了分式的基本性質(zhì)和約分的基礎(chǔ)上進行教學(xué)的,它為后面學(xué)習(xí)異分母分式加減法的奠定基礎(chǔ)。通分的方法其實不難,關(guān)鍵是讓學(xué)生理解為什么要通分和通分的方法,所以,在教學(xué)中,我引導(dǎo)學(xué)生利用分式基本性質(zhì)把分母變成相同而大小不變的方法就是通分這一概念。出示三道練習(xí)題,指導(dǎo)學(xué)生鞏固運用通分的方法。本節(jié)課,我能夠以一個組織者、引導(dǎo)者和參與者的身份進行教學(xué)活動,注重調(diào)動學(xué)生的學(xué)習(xí)興趣,創(chuàng)設(shè)了良好的探究交流的平臺。不把自己的'意愿強加給學(xué)生。給學(xué)生多練,領(lǐng)悟通分的意義及方法,使本節(jié)課收到預(yù)期效果。
所以,如果我們在數(shù)學(xué)課堂教學(xué)中經(jīng)常注視培養(yǎng)學(xué)生的思維能力,當(dāng)學(xué)生的思維受阻時,教師適時點撥,當(dāng)學(xué)生的思維遇卡時,教師巧妙催化,這樣會使學(xué)生在題中數(shù)量間自由地順逆回環(huán),導(dǎo)致學(xué)生發(fā)散思維能力的形成,以有利于培養(yǎng)學(xué)生的創(chuàng)新思維。
分式教學(xué)反思12
成功:
1、本節(jié)課初步達到了教學(xué)目標(biāo),突出了重點,層層推進,突破難點,然后放手讓學(xué)生去猜想同分母分式的加減法法則,嘗試著去解決問題,從對同分母分數(shù)加減法法則類比出同分母分式的加減法法則,同時引導(dǎo)了學(xué)生把一個實際問題數(shù)學(xué)化;低起點,順應(yīng)著學(xué)生的認知過程,設(shè)置了隨堂練習(xí),在用法則的重點環(huán)節(jié)上,無論是例題的分析還是練習(xí)題的落實,都以學(xué)生為中心,給足充分的時間讓學(xué)生去計算,去暴露問題,也為后一步的教學(xué)提供了較好的對比分析的材料,讓他們留下深刻的印象。
2、是以討論的形式呈現(xiàn)給學(xué)生例題1,讓學(xué)生去感受體驗,學(xué)生興趣高漲。每一個層次的練習(xí)完成之后讓學(xué)生去總結(jié)一下在解題過程中的收獲,在此基礎(chǔ)上引導(dǎo)學(xué)生發(fā)現(xiàn)解題技巧,把學(xué)生的認知提升了一個高的層面上,達到了用法則而不拘泥于法則,通過分析題目的顯著特點,來靈活運用方法技巧解決問題。同時把時間和空間留給學(xué)生,讓他們多一些練習(xí),多一些鞏固。
3、是體會到一節(jié)課的科學(xué)設(shè)計不僅對一節(jié)課的成敗取著決定作用,更重要的是對學(xué)生數(shù)學(xué)思想的建立和數(shù)學(xué)方法的掌握欲為重要,科學(xué)的設(shè)計,有利于充分的挖掘?qū)W生的數(shù)學(xué)潛能,突破難點,事半而功倍,有利于數(shù)學(xué)學(xué)習(xí)的深化。
不足:
(1)學(xué)生對于同分母的分式的加減運算掌握得比較好,但是對于異分母的分式加減就掌握得不是很理想,很多學(xué)生對于分式的`通分還很不熟練,也有學(xué)生對于計算結(jié)果應(yīng)該為最簡分式理解不夠總是無法化到最簡的形式。
。2)分式的加減法上完后列舉了一道加減混合運算題,在講解時結(jié)合加減混合運算法則進行復(fù)習(xí),分式的加減混合運算不同的是分母或者分子當(dāng)中如果有出現(xiàn)可以因式分解的應(yīng)該先進行因式分解,異分母的分式應(yīng)先進行通分化為同分母再進行計算,在計算時應(yīng)先觀察分式的特點,達到化繁為簡的目的。
分式教學(xué)反思13
昨天去實驗小學(xué)聽課,課題是《分式的乘除》的第一課時,剛開始秦老師利用類比的數(shù)學(xué)思想,通過復(fù)習(xí)分數(shù)的乘除的運算法則推出分式的乘除法則。緊接著秦老師要求組長批改組員的預(yù)習(xí)作業(yè),隨后由小組組長匯報檢查的情況,并把計算題出現(xiàn)那些錯誤一一類舉出來。我看看手表已經(jīng)過了15分鐘,隨后秦老師以學(xué)生錯題為例題,講解了兩題分子、分母都是單項式的乘除運算。當(dāng)時我在疑惑,一節(jié)課最重要的是前20分鐘,為什么還沒有講解分子、分母是多項式的分式乘除的計算題呢?我覺得計算是學(xué)生的弱項,應(yīng)該教師先做好解題的示范,然后學(xué)習(xí)加強練習(xí),只有學(xué)生自己動手計算才會發(fā)現(xiàn)不足。課進行到25分鐘左右,秦老師開始講解分子、分母是多項式的分式乘除。秦老師不是自己單獨講解,而是和學(xué)生互動,一步一步的.寫出解題過程,并要求學(xué)生說出依據(jù)。最后秦老師請了四位學(xué)生在黑板上做練習(xí),可能時間上沒有分配好,留有余尾。
隨后我們進行了評課,聽了秦老師的課題簡述,我才發(fā)現(xiàn)課堂上自己的評課方向是錯誤的,秦老師的課題就是研究學(xué)生預(yù)習(xí)出會出現(xiàn)的錯誤以及探討預(yù)習(xí)中錯題的類型,最后我覺得秦老師的課還是很優(yōu)秀的,值得我們學(xué)習(xí)。
分式教學(xué)反思14
數(shù)學(xué)的學(xué)習(xí)過程應(yīng)當(dāng)是一個充滿生命力的過程。我們在教學(xué)中也應(yīng)該想辦法讓學(xué)生動起來,使課堂活動起來。在今天我所聽的《分式方程的應(yīng)用》一課,也使我體會到了這一點。
本節(jié)課是《分式方程的應(yīng)用》的第一課時,課堂上顧老師并沒有純粹地就題論題,而是采用了如下方法:一是改變例題和練習(xí)的呈現(xiàn)形式,使教學(xué)內(nèi)容更有趣味性。二是讓學(xué)生自編應(yīng)用題目,體驗學(xué)習(xí)數(shù)學(xué)的快樂。尤其是在讓學(xué)生自編應(yīng)用題的時候,個個都是緊皺眉頭,冥思苦想,很快就開始你說我說,一個個精神抖擻,煞那間教室中一片熱鬧的場面。顧老師這時就抓住這個機會,讓同學(xué)們之間互相交流,各自說出自己編的.題目。同學(xué)們都能聯(lián)系自己身邊發(fā)生的或與生活密切相關(guān)的實際例子。通過這樣的活動,我認為一方面可以鍛煉學(xué)生的思維,另一方面也可以提高學(xué)生解決實際問題的能力。從而也可以使學(xué)生體會到數(shù)學(xué)的應(yīng)用價值。
在以后的教學(xué)中,我也要象顧老師一樣,精心設(shè)計活動,充分調(diào)動學(xué)生參與學(xué)習(xí)的積極性,使學(xué)生動起來,課堂活起來,真正使學(xué)生樂有所學(xué),樂有所獲。
分式教學(xué)反思15
這一周第十七章分式結(jié)束了。原以為本章內(nèi)容較易理解,經(jīng)過適度的訓(xùn)練,學(xué)生會掌握得很好?墒墙(jīng)過一次小考及平時的觀察,發(fā)現(xiàn)學(xué)生的運算能力很差,運算的準確率太低;應(yīng)變能力就更不用說了,稍微變一變題型,學(xué)生就不會做。其實,造成這種現(xiàn)狀的原因不僅與學(xué)生自身有極大關(guān)系,與教師的教學(xué)也有一定的關(guān)系。反思自己這一個月的教學(xué)行為,我覺得自己身上或多或少還存在以下幾方面的問題:
1、教學(xué)過程中還存在著“不敢放手”的現(xiàn)象。
課堂教學(xué)中,我確實很注意運用學(xué)案式教學(xué),精心設(shè)計問題引發(fā)學(xué)生思考,組織學(xué)生進行討論。但問題提出后沒給學(xué)生留有足夠的思維空間,小組討論時間也不夠總擔(dān)心學(xué)生想不周全或課堂教學(xué)內(nèi)容完不成,因此對于某些問題,不等學(xué)生思考完善就急于給出答案。導(dǎo)致學(xué)生對問題的片面理解,不能引發(fā)學(xué)生深思,也就不能給學(xué)生留下深刻印象,因此造成很多學(xué)生對于做過的題一點印象都沒有。
2、課堂教學(xué)中注意培養(yǎng)學(xué)生的發(fā)散思維,但有時卻“貪多而嚼不爛”,忽略了學(xué)生的接受能力。
在平時的'授課過程中,特別是講解例、習(xí)題時,我非常注意培養(yǎng)學(xué)生的發(fā)散思維,通過“一題多解,一題多變”的反復(fù)訓(xùn)練,開拓學(xué)生視野,不斷總結(jié)方法,并進行相關(guān)聯(lián)系,培養(yǎng)學(xué)生多角度思考問題,多途徑解決問題的能力。但有時卻忽略了學(xué)生的接受能力,特別是中、下等生的理解接受能力。因此,部分學(xué)生的應(yīng)變能力沒能得到提高,反而有個別學(xué)生將幾種方法混為一談記作一鍋粥。
3、課堂教學(xué)中缺乏必要的耐心關(guān)注中下等生,使他們學(xué)習(xí)缺乏信心,導(dǎo)致兩極分化。
課堂教學(xué)中,往往將精力集中在中上等生的身上,大多而忽略了更需要關(guān)心的中下等生。致使他們越落越遠,最終失去學(xué)習(xí)信心而加重兩極分化。
針對以上問題,下階段準備采取以下補救措施:
1、還給學(xué)生一片思維的空間,要充分相信學(xué)生,給小組更多的討論時間。
2、對過多的習(xí)題進行適當(dāng)篩選,精講精練,在45分鐘內(nèi)進行有效學(xué)習(xí)
3、課堂上注意教學(xué)節(jié)奏,關(guān)注中下等生的學(xué)習(xí),讓他們跟上老師的步伐,盡量縮小兩極分化
4、多給學(xué)生自己練習(xí)的時間,讓學(xué)生真正成為學(xué)習(xí)的主體,充分發(fā)揮小組長的作用。
【分式教學(xué)反思】相關(guān)文章:
分式教學(xué)反思03-26
《分式與分式方程復(fù)習(xí)》教學(xué)反思04-14
分式的乘除教學(xué)反思03-31
分式方程教學(xué)反思02-18
分式和方程教學(xué)反思12-23
分式方程教學(xué)反思06-28
分式方程教學(xué)反思15篇02-19
分式方程教學(xué)反思20篇01-03