高二數(shù)學(xué)教學(xué)計劃
時間過得太快,讓人猝不及防,迎接我們的將是新的生活,新的挑戰(zhàn),是時候開始制定計劃了。想學(xué)習(xí)擬定計劃卻不知道該請教誰?以下是小編為大家收集的高二數(shù)學(xué)教學(xué)計劃,歡迎閱讀與收藏。
高二數(shù)學(xué)教學(xué)計劃1
一. 指導(dǎo)思想
《課程標(biāo)準(zhǔn)》明確指出:“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體、美等全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想,闡述了新課程改革的教學(xué)理念和要點。在高中階段的教學(xué)過程中,要努力使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能,具備一定的數(shù)學(xué)素養(yǎng)。
二.課程總體目標(biāo)
根據(jù)本學(xué)期的教學(xué)內(nèi)容,教學(xué)任務(wù)和要求,本學(xué)期的課程目標(biāo)可概括如下:
1.夯實高中數(shù)學(xué)課程必修⑤、必修③、選修2-1中的基礎(chǔ)知識,突出相應(yīng)的基本方法與基本技能。
2.注重培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,提高學(xué)生綜合運用所學(xué)的知識,分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力,并且不斷地滲透函數(shù)與方程、數(shù)形結(jié)合、分類討論、化歸與轉(zhuǎn)化等重要的數(shù)學(xué)思想方法。
3.根據(jù)數(shù)學(xué)的學(xué)科特點,加強自主性學(xué)習(xí)的教育,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,增強學(xué)生學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的信心;培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、自主探究、創(chuàng)新的精神,讓學(xué)生親自體會學(xué)有所得,學(xué)有所用的快樂。
4.學(xué)會通過收集信息并進行加工、整合,處理數(shù)據(jù)、制作圖像、分析原因、推導(dǎo)結(jié)論來解決實際問題的思維能力和操作方法。
5.使學(xué)生具備一定的數(shù)學(xué)素養(yǎng),逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性思維,體會數(shù)學(xué)的美學(xué)意義與人文科學(xué),進一步樹立辯證唯物主義和歷史唯物主義世界觀。
三.學(xué)情分析及相關(guān)措施:
學(xué)生步入高二年級就意味著新的學(xué)習(xí)的開始,無論是從學(xué)習(xí)的內(nèi)容、學(xué)習(xí)的方法,還是教學(xué)模式的轉(zhuǎn)變,都需要一個適應(yīng)的過程。高中階段的特殊性就在于它的.跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望。我們要從學(xué)生的認識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
1.結(jié)合學(xué)生的實際情況,做好初、高中學(xué)習(xí)方法的銜接、過渡和轉(zhuǎn)化工作。
2.注重夯實基礎(chǔ)知識,突出重點、分散難點.所教的基礎(chǔ)知識依據(jù)《課程標(biāo)準(zhǔn)》的要求,著眼于夯實基礎(chǔ)知識,注重能力的穩(wěn)步提升,充分體現(xiàn)基礎(chǔ)與能力并重,循序漸進的教學(xué)原則。
3.培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
4.讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備。
5.抓好優(yōu)生強化與后進生的轉(zhuǎn)化輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
6.注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高二數(shù)學(xué)教學(xué)計劃2
一、教材分析
1、教材地位、作用
本節(jié)課的內(nèi)容選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修3(A)版》第三章中的第3。2。1節(jié)古典概型。它安排在隨機事件的概率之后,幾何概型之前,學(xué)生還未學(xué)習(xí)排列組合的情況下教學(xué)的。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位,是學(xué)習(xí)概率必不可少的內(nèi)容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節(jié)課的教學(xué)重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學(xué)情分析
學(xué)生基礎(chǔ)一般,但師生之間,學(xué)生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節(jié)上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學(xué)目標(biāo)
1、知識與技能目標(biāo)
、拧⒗斫獾瓤赡苁录母拍罴案怕视嬎愎;⑵、能夠準(zhǔn)確計算等可能事件的概率。
2、過程與方法
根據(jù)本節(jié)課的知識特點和學(xué)生的認知水平,教學(xué)中采用探究式和啟發(fā)式教學(xué)法,通過生活中常見的實際問題引入課題,層層設(shè)問,經(jīng)過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學(xué)生對問題的理解從感性認識上升到理性認識。
3、情感態(tài)度與價值觀
概率問題與實際生活聯(lián)系緊密,學(xué)生通過概率知識的學(xué)習(xí),可以更好的理解隨機現(xiàn)象的本質(zhì),掌握隨機現(xiàn)象的規(guī)律,科學(xué)地分析、解釋生活中的一些現(xiàn)象,初步形成實事求是的科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。
三、重點、難點
重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
四、教學(xué)過程
1、創(chuàng)設(shè)情境提出問題
師:在考試中遇到不會做的選擇題同學(xué)們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
【設(shè)計意圖】通過這個同學(xué)們經(jīng)常會遇到的問題,引導(dǎo)學(xué)生合作探索新知識,符合“學(xué)生為主體,老師為主導(dǎo)”的現(xiàn)代教育觀點,也符合學(xué)生的認知規(guī)律。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,使課堂的有效思維增加。
2、抽象思維形成概念
師:考察試驗一“拋擲一枚質(zhì)地均勻的骰子”,有幾種不同的結(jié)果,結(jié)果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。
師:考察試驗二“拋擲一枚質(zhì)地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:(1)在“拋擲一枚質(zhì)地均勻的骰子”試驗中,會同時出現(xiàn)“1點”和“2點”這兩個基本事件嗎?
。2)事件“出現(xiàn)偶數(shù)點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
。1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和。(讓學(xué)生交流討論,教師再加以總結(jié)、概括)
【設(shè)計意圖】讓學(xué)生歸納與總結(jié),鼓勵學(xué)生用自己的語言表述,從而提高學(xué)生的表達能力與數(shù)學(xué)語言的組織能力
例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結(jié)果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結(jié)果。
解:所求的基本事件共有6個:
【設(shè)計意圖】由于學(xué)生沒有學(xué)習(xí)排列組合知識,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的`總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數(shù)這一難點,同時滲透了數(shù)形結(jié)合及分類討論的數(shù)學(xué)思想。
師:你能發(fā)現(xiàn)前面兩個數(shù)學(xué)試驗和例1有哪些共同特點嗎?(先讓學(xué)生交流討論,然后教師抽學(xué)生回答,并在學(xué)生回答的基礎(chǔ)上再進行補充)
試驗一中所有可能出現(xiàn)的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
試驗二中所有可能出現(xiàn)的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現(xiàn)的可能性相等,都是;
例1中所有可能出現(xiàn)的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
經(jīng)概括總結(jié)后得到:
①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
【設(shè)計意圖】學(xué)生在合作交流的探究氛圍中思考、質(zhì)疑、傾聽、表述,體驗到成功的喜悅,學(xué)會學(xué)習(xí)、學(xué)會合作,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納問題的能力。
3、概念深化,加深理解
試驗“向一個圓面內(nèi)隨機地投射一個點,如果該點落在圓內(nèi)任意一點都是等可能的”。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果是圓面內(nèi)所有的點,試驗的所有可能結(jié)果數(shù)是無限的,雖然每一個試驗結(jié)果出現(xiàn)的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學(xué)隨機地向一靶心進行射擊,這一試驗的結(jié)果只有有限個:命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)’。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果只有7個,而命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)的出現(xiàn)不是等可能的,即不滿足古典概型的第二個條件。
【設(shè)計意圖】這兩個問題的設(shè)計是為了讓學(xué)生更加準(zhǔn)確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學(xué)難點,培養(yǎng)學(xué)生思維的深刻性與批判性。
4、觀察比較推導(dǎo)公式
【設(shè)計意圖】學(xué)生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數(shù)學(xué)知識形成的發(fā)生與發(fā)展的過程,體現(xiàn)具體到抽象、從特殊到一般的數(shù)學(xué)思想,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應(yīng)該還要注意些什么呢?(先讓學(xué)生自由說,教師再加以歸納)在使用古典概型的概率公式時,應(yīng)該注意:
、僖袛嘣摳怕誓P褪遣皇枪诺涓判;
、谝页鲭S機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
【設(shè)計意圖】深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
5、應(yīng)用與提高
【設(shè)計意圖】本題通過學(xué)生的觀察比較,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸使學(xué)生養(yǎng)成自主探究能力。同時培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣。
6、知識梳理課堂小結(jié)
1、本節(jié)課你學(xué)習(xí)到了哪些知識?
2、本節(jié)課滲透了哪些數(shù)學(xué)思想方法?
7、作業(yè)布置
1、閱讀本節(jié)教材內(nèi)容
2、必做題課本130頁練習(xí)第1,2題,課本134頁習(xí)題3。2A組第4題
3、選做題課本134頁習(xí)題B組第1題
8、教學(xué)反思
本節(jié)課的教學(xué)設(shè)計以“問題串”的方式呈現(xiàn)為主,教學(xué)過程中師生共同合作,體驗古典概型的特點,公式的生成、發(fā)現(xiàn),把“數(shù)學(xué)發(fā)現(xiàn)”的權(quán)力還給學(xué)生,讓學(xué)生感受知識形成的過程,獲得數(shù)學(xué)發(fā)現(xiàn)的體驗。將學(xué)習(xí)的主動權(quán)較完整地交還給學(xué)生。本節(jié)課始終本著在教師的引導(dǎo)下,學(xué)生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學(xué)效果。構(gòu)建利于學(xué)生學(xué)習(xí)的有效教學(xué)情境,較好地拓展師生的活動空間,符合新課程的理念。
高二數(shù)學(xué)教學(xué)計劃3
一、學(xué)情分析
高二某班共有學(xué)生73人, 8班共有學(xué)生70人。兩個班級都是高二理科班的三類班,大部分學(xué)生基礎(chǔ)不扎實,學(xué)習(xí)興趣不高,甚至很多學(xué)生存在怕數(shù)學(xué)科的心理。但他們還是存在一顆想學(xué)好數(shù)學(xué)的心,也想融入變化多端的數(shù)學(xué)世界,更想在每次考試中獨領(lǐng)風(fēng)騷,鑒于此,對他們正確引導(dǎo),教學(xué)中適當(dāng)調(diào)整難度,起點放低點,步子邁小點,還是會有好成績的。
二、教學(xué)計劃
1、加強自身學(xué)習(xí)。
、偌訌娬n本的研讀。教科書是一切教學(xué)的出發(fā)點,同時也是考試的歸屬地,任何一個數(shù)學(xué)知識點都會從教科書中找到類型題或者相似題或者其影子。對教科書能否吃透,專研到位,直接決定著教學(xué)知識的全面性和系統(tǒng)性。也就決定著研讀教材的必要性。
、谒街梢怨ビ。一個人由于生活的環(huán)境,面對的對象,自身知識局限等多方面原因,視野和出發(fā)點都有局限,思考問題和解決問題的廣度和深度都有局限,因此,多閱讀教學(xué)參考類的書,吸取他人的經(jīng)驗,借鑒他人所長彌補自己所短,對于增強教學(xué)的針對性和精彩性大有裨益。
、蹚娀n改意識。新課改已經(jīng)全面鋪開,新課改的精神和思想都獨具時代性,前瞻性,科學(xué)性,因此,加強新課改知識的學(xué)習(xí),領(lǐng)悟新課改思想,增強新課改意識,是時代的需要,是發(fā)展的需要。因此,積極參與新課改培訓(xùn),領(lǐng)會新課改精髓,并應(yīng)用于實踐中是當(dāng)前必須要做的,只有這樣,才能使自己的知識新陳代謝。
④認真參與組內(nèi)備課。珍惜每周一次的集體備課,充分利用好這次集體備課機會,從同行們那里學(xué)習(xí)到自己缺乏或者不擅長的東西,并積極實施好組內(nèi)的各項安排,落實好課時要求。
、菰鰪娐犝n意識。按照學(xué)校的要求,積極參加新課改年級的'課堂聽課活動,聽取授課教師的點評,發(fā)現(xiàn)亮點,記錄亮點,積累亮點,點亮亮點。
2、抓好課堂教學(xué)主戰(zhàn)場,激發(fā)師生學(xué)習(xí)數(shù)學(xué)熱情。
、偌訌娦抡n情景創(chuàng)設(shè),激發(fā)學(xué)生學(xué)習(xí)熱情。每一節(jié)新課的開展,都有其現(xiàn)實意義,有其價值所在,有其趣味性,充分挖掘好這方面知識,可起到一個良好的開端作用。
、诰x精講例題。對于學(xué)生自己學(xué)得會的,不講,對于學(xué)生討論后可以解決的,給以適當(dāng)點撥,對于學(xué)生在教師引導(dǎo)下完成的,要慢慢講,細細的講,爭取每個學(xué)生都聽得進,聽得懂,學(xué)得會。對于超越學(xué)生承受能力的,一概不講。
、劬牟贾谜n后作業(yè)。課后作業(yè)是課堂教學(xué)的反饋,作業(yè)質(zhì)量的高低,一定層面可以反映教學(xué)效果的高低,因此,作業(yè)的布置需要科學(xué)化,分層化,多樣化,且知識點具有全面性。
3、做好課后輔導(dǎo)工作。
、倮猛碜粤(xí),充分給以每個學(xué)生耐心、細心、全面的輔導(dǎo)。讓學(xué)生積累的問題得到徹底解決。
、诶米粤(xí)課時間,尋找需要幫助的學(xué)生進行輔導(dǎo),公式背不出來的,抓背公式,不交作業(yè)的,責(zé)令補交作業(yè)。
4、做好作業(yè)、考試反饋工作。
學(xué)生認真完成作業(yè)和考卷,教師進行批改,總結(jié)共性問題,發(fā)現(xiàn)個性問題,有針對性的給以反饋,及時消除困惑。
5、規(guī)范作答,養(yǎng)成良好習(xí)慣。
現(xiàn)在學(xué)生的數(shù)學(xué)答卷,條理不清晰,邏輯混亂,因果顛倒,這是基礎(chǔ)不扎實的表現(xiàn),更是一種思維的缺陷。因此,現(xiàn)階段抓好規(guī)范答題,有助于學(xué)生良好數(shù)學(xué)思維的養(yǎng)成,避免將來高考失分和日后生活的凌亂。
6、提高學(xué)生的數(shù)學(xué)興趣,普及數(shù)學(xué)價值規(guī)律的應(yīng)用。
興趣是最好的教師。數(shù)學(xué)難,數(shù)學(xué)煩,難在何處,煩在何方?找到原因,對癥下藥,通過課堂,移植中外數(shù)學(xué)趣味知識,讓學(xué)生體會到數(shù)學(xué)的價值所在,通過多媒體,降低數(shù)學(xué)思維難度等等都是提高學(xué)生興趣的好方法。
以上是這個學(xué)期的教學(xué)工作計劃,在實施過程中,將及時作出調(diào)整,以期達到教與學(xué)的最佳效果。
高二數(shù)學(xué)教學(xué)計劃4
一、 指導(dǎo)思想:
堅持以“學(xué)生發(fā)展為本,基于學(xué)生發(fā)展,關(guān)注學(xué)生發(fā)展,為了學(xué)生的發(fā)展”為教育課程改革的核心理念。不斷研究課程標(biāo)準(zhǔn)。在教學(xué)中,要突出培養(yǎng)學(xué)生的創(chuàng)新和實踐能力,收集處理信息的能力、獲取新知識的能力、分析解決問題的能力,以及交流協(xié)作的能力,發(fā)展學(xué)生對自然和社會的責(zé)任感。從而實現(xiàn)全體學(xué)生的發(fā)展,以及學(xué)生個體的全面發(fā)展。為此,教師要發(fā)揮自己課程建設(shè)中的能動作用,要變“教教材”為“用教材教”,要變“經(jīng)師”為“人師”,通過創(chuàng)造性地實施新課程,在知識、技能的傳授過程中實現(xiàn)學(xué)生情感態(tài)度價值觀的目標(biāo),實現(xiàn)育人的功效。
二、合理安排本學(xué)期教學(xué)進度,扎扎實實完成教學(xué)任務(wù):
本學(xué)期授課時間約為17周,約102課時,本學(xué)期的教學(xué)任務(wù)第一學(xué)段:數(shù)學(xué)必修5約42課時;第二學(xué)段:必修3約46課時,保證完成教學(xué)任務(wù)。
三、認真?zhèn)湔n工作,保證質(zhì)量:
備課做到既備教材又備學(xué)生,認真學(xué)習(xí)新課標(biāo),鉆研教材,掌握教材知識結(jié)構(gòu),重點,難點,并與學(xué)生原有知識加以聯(lián)系,做到有的放矢。
四、精選例題和作業(yè):
為提高學(xué)生學(xué)習(xí)的主動性、積極性,培養(yǎng)學(xué)生的創(chuàng)新意識。在教學(xué)中既要照顧中、下層學(xué)生,也要注意培養(yǎng)優(yōu)生,因此,例題和課外作業(yè)的選取一定要有梯度,結(jié)合教材,可適度增減例題。課外作業(yè)分層要求:A組題要求學(xué)生都要完成;B組題要求學(xué)生有選擇地完成;練習(xí)冊上的題目經(jīng)教師精選的必做,其他選做。
五、信息共享,發(fā)揮集體智慧的作用:
為加快對試驗課的理解和掌握,積極探索教改進程,建立備課組資料庫,要積極借助網(wǎng)絡(luò)信息收集和篩選資料存庫,發(fā)揮集體智慧,及時應(yīng)用到具體教學(xué)中。
六、認真抓好落實,全面提高:
認真做好學(xué)困生的工作,對他們的`學(xué)習(xí)加以督促,對他們的不良習(xí)慣加以糾正,爭取 不讓一個學(xué)生掉隊,大面積提高教學(xué)質(zhì)量,為使提高高二學(xué)生的數(shù)學(xué)成績而努力奮斗。
1,培養(yǎng)良好的學(xué)習(xí)興趣。
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學(xué)習(xí)的主動性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂趣出發(fā)上升為自覺的理性的“認識”過程,這自然會變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?
(1)課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W(xué)習(xí)的動力。
(3)思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。
(4)聽課中注意老師講解時的數(shù)學(xué)思想,多問為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?
(5)把概念回歸自然。所有學(xué)科都是從實際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應(yīng)用概念判斷、推理時會準(zhǔn)確。
2、 建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
高二數(shù)學(xué)教學(xué)計劃5
(1)知識目標(biāo):
1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo):
1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學(xué)生用數(shù)學(xué)的意識.
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)M(x,y)是圓上任意一點,根據(jù)定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點間的距離公式,點M適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
II.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的'方程是 ,經(jīng)過圓上一點 的切線的方程是: .
III.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
(五)小結(jié)反思(拓展引申)
1.課堂小結(jié):
(1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:
當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:
(2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法
(3) 已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是:
(4) 求解應(yīng)用問題的一般方法
2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4
(B)思維拓展型作業(yè):
試推導(dǎo)過圓 上一點 的切線方程.
3.激發(fā)新疑:
問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程: 的曲線是什么圖形?
教學(xué)設(shè)計說明
圓是學(xué)生比較熟悉的曲線,初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實際問題中的應(yīng)用,增強學(xué)生用數(shù)學(xué)的意識。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計不但突出了重點,更使難點的突破水到渠成.
本節(jié)課的設(shè)計了五個環(huán)節(jié),以問題為紐帶,以探究活動為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力。
高二數(shù)學(xué)教學(xué)計劃6
一、學(xué)生基本情況
261班共有學(xué)生75人,268班共有學(xué)生72人。268班學(xué)習(xí)數(shù)學(xué)的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對高二乃至整個高中的數(shù)學(xué)學(xué)習(xí)有很大的影響,數(shù)學(xué)成績尖子生多或少,但若能雜實復(fù)習(xí)好函數(shù)部分,加上學(xué)生又很努力,將來前途無量。若能好好的引導(dǎo),進一步培養(yǎng)他們的學(xué)習(xí)興趣,
二、教學(xué)要求
。ㄒ唬┣橐饽繕(biāo)
。1)經(jīng)過分析問題的方法的教學(xué)、經(jīng)過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,使學(xué)生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
。3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識。
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程的幻妙多姿
。ǘ┠芰σ
1、培養(yǎng)學(xué)生記憶能力。
。1)在對不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學(xué)習(xí)中,進一步培養(yǎng)記憶能力。做到記憶準(zhǔn)確、持久,用時再現(xiàn)得迅速、正確。
。2)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
。3)經(jīng)過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運算能力。
。1)經(jīng)過解不等式及不等式組的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。
。2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。
。3)經(jīng)過解析法的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。
3、培養(yǎng)學(xué)生的思維能力。
。1)經(jīng)過含參不等式的求解,培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
(2)經(jīng)過解析幾何與不等式的一題多解、多題一解、經(jīng)過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
。3)經(jīng)過不等式引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
。4)加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。
。5)經(jīng)過解析幾何的概念教學(xué),培養(yǎng)學(xué)生的正向思維與逆向思維的能力。
。6)經(jīng)過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
4、培養(yǎng)學(xué)生的觀察能力。
。1)在比較鑒別中,提高觀察的準(zhǔn)確性和完整性。
。2)經(jīng)過對個性特征的分析研究,提高觀察的`深刻性。
。ㄈ┲R要求
1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;
2、經(jīng)過直線與圓的教學(xué),使學(xué)生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。
三、教材簡要分析
1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。不等式在整個高中數(shù)學(xué)中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學(xué)習(xí)圓錐曲線、導(dǎo)數(shù)和微分等知識的的基礎(chǔ)。,是直線方程的一個直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并經(jīng)過分析標(biāo)準(zhǔn)方程研究它們的性質(zhì)。
四、重點與難點
。ㄒ唬┲攸c
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關(guān)系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì)。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導(dǎo),簡單線性規(guī)劃的問題的解法。
3、用坐標(biāo)法研究幾何問題,求曲線方程的一般方法。
五、教學(xué)措施
1、教學(xué)中要傳授知識與培育能力相結(jié)合,充分調(diào)動學(xué)生學(xué)習(xí)的主動性,培育學(xué)生的概括能力,是學(xué)生掌握數(shù)學(xué)基本方法、基本技能。
2、持之以恒與高三聯(lián)系,切實面向高考,以五大數(shù)學(xué)思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學(xué)生的學(xué)習(xí)負擔(dān)。
3、加強教育教學(xué)研究,持之以恒學(xué)生主體性原則,持之以恒循序漸進原則,持之以恒啟發(fā)性原則。研究并采用以發(fā)現(xiàn)式教學(xué)模式為主的教學(xué)方法,全面提高教學(xué)質(zhì)量。
4、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量
5、持之以恒向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、持之以恒學(xué)法研討,加強個別輔導(dǎo)(差生與優(yōu)生),提高全體學(xué)生的整體數(shù)學(xué)水平,培育尖子學(xué)生。 7、加強數(shù)學(xué)研究課的教學(xué)研究指導(dǎo),培養(yǎng)學(xué)識的動手能力。
六、課時安排
本學(xué)期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時
高二數(shù)學(xué)教學(xué)計劃7
一.指導(dǎo)思想
根據(jù)湖北省的新課改教學(xué)實施指導(dǎo)意見,結(jié)合我們學(xué)校的實際教學(xué)情況,發(fā)揮備課組的集體力量,全力以赴的完成本學(xué)期的教學(xué)任務(wù)。同時加強對新課改理念的學(xué)習(xí),相互協(xié)作,積極面對新課改的要求。
二.工作重點
認真落實組里每位老師的課堂常規(guī)教學(xué)任務(wù),努力加強老師的課外教學(xué)科研工作;積極學(xué)習(xí)新課改的理論知識,認真研究新教材的教法,做一個教學(xué)科研全方位的教師;同時發(fā)揮備課組全體成員的集體力量,積極研討新教材的教學(xué)內(nèi)容,全力提升高二年級的數(shù)學(xué)水平,縮小和其它學(xué)校的差距。
三.具體措施
(1)落實好組里每位老師的兩節(jié)公開課的任務(wù),按照先議教案,再聽課堂,最后評價的程序嚴格落實到位。
(2)充分利用每個星期二下午的集體備課時間,商討教學(xué)中存在的'問題,探究新教材的教法。同時爭取機會出去學(xué)習(xí)教改名校的數(shù)學(xué)學(xué)科課改教學(xué)的經(jīng)驗。
(3)做好每一次階段性的考試工作,考前認真準(zhǔn)備,閱卷客觀公正,客觀評價教學(xué)質(zhì)量。
(4)分班落實數(shù)學(xué)學(xué)科的培優(yōu)補差工作,尤其是文科班數(shù)學(xué)的提升。
(5)準(zhǔn)備參加5月份的全國高中數(shù)學(xué)聯(lián)賽的活動,積極安排年輕老師參加數(shù)學(xué)教學(xué)競賽工作。
四.教學(xué)進度
(1)2,3月份,文科完成選修1-1和選修3-1,理科完成選修2-1和3-1的教學(xué)任務(wù),建議把選修3-1的《數(shù)學(xué)史選講》參插講。
(2)4月份,理科完成選修2-2,文科完成選修4-5
(3)5月份,理科完成選修4-1,文科完成選修4-5。
(4)6月份,理科完成選修4-4,文科開始期末考試的復(fù)習(xí)。
說明:根據(jù)xx省新課程教學(xué)實施指導(dǎo)意見,本學(xué)期理科完成選修2-1和2-2的內(nèi)容,文科完成選修1-2和1-1的教學(xué)內(nèi)容,但是我們還是打算把選修3-1,4-5的內(nèi)容都上完,為高三復(fù)習(xí)做好準(zhǔn)備,從時間上看,文科的教學(xué)時間是充足的,但是理科的教學(xué)時間比較緊,希望各位老師合理安排好教學(xué)時間,確實落實好每章每節(jié)的教學(xué)任務(wù)。
高二數(shù)學(xué)教學(xué)計劃8
一、目標(biāo)要求
1.深入鉆練教材,在借鑒她校課件基礎(chǔ)上,結(jié)合所教學(xué)生實際,確定好每節(jié)課所教內(nèi)容,及所采用的教學(xué)手段、方法。
2.本期還要幫助學(xué)生搞好《數(shù)學(xué)》必修內(nèi)容的復(fù)習(xí),一是為學(xué)生學(xué)業(yè)水平檢測作準(zhǔn)備,二是為高三復(fù)習(xí)打基礎(chǔ)。
3.本期的專題選講務(wù)求實效。
4.繼續(xù)培養(yǎng)學(xué)的學(xué)習(xí)興趣,幫助學(xué)生解決好學(xué)習(xí)教學(xué)中的困難,提高學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力。
5.本期重點培養(yǎng)和提升學(xué)生的'抽象思維、概括、歸納、整理、類比、相互轉(zhuǎn)化、數(shù)形結(jié)合等能力,提高學(xué)生解題能力。
二、教學(xué)措施:
1、認真落實,搞好集體備課。每周至少進行一次集體備課,每位老師都要提前一周進行單元式的備課,集體備課時,由一名老師作主要發(fā)言人,對下一周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學(xué)方法等。在星期一的集合備課中,主要是對上周備課中的情況作補充。每次備課都要用一定的時間交流一下前一段的教學(xué)情況,進度、學(xué)生掌握情況等。
2、詳細計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料是《高中數(shù)學(xué)新新學(xué)案》,要求學(xué)生按教學(xué)進度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。每周以內(nèi)容滾動式編一份練習(xí)試卷,星期五發(fā)給學(xué)生帶回家完成,星期一交,老師要進行批改,存在的普遍性問題最好安排時間講評。試題量控制為10道選擇題(4舊6新)、4道填空題(1舊3新)、4道解答題。
3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。本學(xué)期第二課堂與數(shù)學(xué)競賽準(zhǔn)備班繼續(xù)分開進行輔導(dǎo)。平常意義上的第二課堂輔導(dǎo)學(xué)生,主要是以興趣班的形式,以復(fù)習(xí)鞏固課堂教學(xué)的同步內(nèi)容為主,一般只選用常規(guī)題為例題和練習(xí),難度低于高考接近高考,用專題講授為主要形式開展輔導(dǎo)工作。
4、加強輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要,所以每位老師必須重視搞好輔導(dǎo)工作。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。
總結(jié):以上就是下學(xué)期高二必修數(shù)學(xué)教學(xué)計劃,希望對您的教學(xué)有所幫助。
高二數(shù)學(xué)教學(xué)計劃9
一、教材依據(jù)
本節(jié)課是湘教版數(shù)學(xué)(必修三)第二章《解析幾何初步》第二節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。
二、教材分析
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題——求直線方程問題。在引入,過程中要讓學(xué)生弄清直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。
在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
三、教學(xué)目標(biāo)
知識與技能:(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。
過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生通過對比理解“截距”與“距離”的區(qū)別。
情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學(xué)生能用聯(lián)系的觀點看問題。
四、教學(xué)重點
重點:直線的點斜式方程和斜截式方程。
五、教學(xué)難點
難點:直線的點斜式方程和斜截式方程的`應(yīng)用。
要點:運用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。
六、教學(xué)準(zhǔn)備
1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.
創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性學(xué)習(xí)活動。
2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的思想;學(xué)生要學(xué)會用“數(shù)形結(jié)合”的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:
、.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達能力。
②.分組討論。
七、教學(xué)過程
問 題
師生活動
設(shè)計意圖
1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件?
學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標(biāo) 滿足的關(guān)系式。
使學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。
2、直線 經(jīng)過點 ,且斜率為 。設(shè)點 是直線 上的任意一點,請建立 與 之間的關(guān)系。
學(xué)生根據(jù)斜率公式,可以得到,當(dāng) 時, ,即
(1)
教師對基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個學(xué)生都能推導(dǎo)出這個方程。
培養(yǎng)學(xué)生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標(biāo) 滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。
3、(1)過點 ,斜率是 的直線 上的點,其坐標(biāo)都滿足方程(1)嗎?
學(xué)生驗證,教師引導(dǎo)。
使學(xué)生了解方程為直線方程必須滿兩個條件。
(2)坐標(biāo)滿足方程(1)的點都在經(jīng)過 ,斜率為 的直線 上嗎?
學(xué)生驗證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式.
使學(xué)生了解方程為直線方程必須滿兩個條件。
4、直線的點斜式方程能否表示坐標(biāo)平面上的所有直線呢?
學(xué)生分組互相討論,然后說明理由。
使學(xué)生理解直線的點斜式方程的適用范圍。
5、(1) 軸所在直線的方程是什么? 軸所在直線的方程是什么?
(2)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
(3)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。
進一步使學(xué)生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
6、例2、例4的教學(xué)。
教師引導(dǎo)學(xué)生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。
學(xué)會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。
7、例3的教學(xué)。
求經(jīng)過點 ,斜率為 的直線 的方程。
學(xué)生獨立求出直線 的方程:
(2)
在此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。
引入斜截式方程,讓學(xué)生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
8、觀察方程 ,它的形式具有什么特點?
學(xué)生討論,教師及時給予評價。
深入理解和掌握斜截式方程的特點?
9、直線 在 軸上的截距是什么?
學(xué)生思考回答,教師評價。
使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。
10、你如何從直線方程的角度認識一次函數(shù) ?一次函數(shù)中 和 的幾何意義是什么?你能說出一次函數(shù) 圖象的特點嗎?
學(xué)生思考、討論,教師評價、歸納概括。
體會直線的斜截式方程與一次函數(shù)的關(guān)系.
11、課堂練習(xí)第65頁練習(xí)第1,2,3題。
學(xué)生獨立完成,教師檢查反饋。
鞏固本節(jié)課所學(xué)過的知識。
12、小結(jié)
教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認識,了解知識的來龍去脈。
13、布置作業(yè):第77頁第5題
學(xué)生課后獨立完成。
鞏固深化
八、教學(xué)反思
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。
本節(jié)課的基本題形:
1、已知直線上一點及直線的傾斜角,求直線的方程并作圖;
2、已知直線上兩點,求直線的方程并作圖。教學(xué)時應(yīng)注意讓學(xué)生明確直線的傾斜角與斜率的關(guān)系,掌握過兩點的直線的斜率公式,訓(xùn)練學(xué)生求直線方程的書寫格式及直線的規(guī)范作圖。
高二數(shù)學(xué)教學(xué)計劃10
一,學(xué)生的基本情況
118班66人,115班48人。118班學(xué)習(xí)數(shù)學(xué)的氛圍很濃。但由于高一的函數(shù)部分基礎(chǔ)較差,對高二乃至整個高中的數(shù)學(xué)學(xué)習(xí)影響很大。數(shù)學(xué)成績或多或少都有尖子生,但如果能認真復(fù)習(xí)函數(shù)部分,學(xué)生努力,前途無量。如果我們能很好地引導(dǎo)他們,進一步培養(yǎng)他們的學(xué)習(xí)興趣,…
二,教學(xué)要求
(a)情感目標(biāo)
(1)通過問題分析方法、一個不等式問題的多解、一個不等式問題的多解、一個不等式問題的多重證明的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
(2)提供生活背景,讓學(xué)生體驗不等式、直線、圓以及圍繞它們的圓錐曲線,培養(yǎng)運用數(shù)學(xué)學(xué)習(xí)數(shù)學(xué)的意識。
(3)探究不等式和二次曲線的本質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,學(xué)會小組合作學(xué)習(xí)中的交流和相互評價,提高學(xué)生的合作意識
(4)以情感目標(biāo)為基礎(chǔ),規(guī)范教學(xué)過程,增強學(xué)習(xí)信念和信心。
(5)給學(xué)生時間和空間、班級和探索發(fā)現(xiàn)的權(quán)利,給學(xué)生自主探索和合作的機會,在發(fā)展思維能力的同時,培養(yǎng)學(xué)生的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗“發(fā)現(xiàn)——個挫折3354個矛盾——個頓悟——個新發(fā)現(xiàn)”的科學(xué)發(fā)現(xiàn)過程的神奇
(2)能力要求
1.培養(yǎng)學(xué)生的記憶能力。
(1)在研究不等式的性質(zhì)、平均不等式、思維方法和邏輯模式時,進一步培養(yǎng)記憶能力。讓記憶準(zhǔn)確持久,快速正確的重現(xiàn)。
(2)通過對定義和命題的整體結(jié)構(gòu)的教學(xué),可以揭示它們的本質(zhì)特征和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實和具體數(shù)據(jù)的記憶。
(3)通過揭示解析幾何的概念、公式和視值之間的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2.培養(yǎng)學(xué)生的計算能力。
(1)通過解不等式和不等式組的訓(xùn)練,訓(xùn)練學(xué)生的運算能力。
(2)加強概念、公式、規(guī)則的清晰性和靈活性的教學(xué),培養(yǎng)學(xué)生的計算能力。(3)通過分析方法的教學(xué),提高學(xué)生在操作過程中清晰、合理、簡單的能力。
(4)通過一題多解、一題多變,培養(yǎng)正確、快速、合理、靈活的計算能力,促進知識的滲透和傳遞。(5)利用數(shù)字和形狀的結(jié)合,尋找另一種提高學(xué)生計算能力的方法。
3.培養(yǎng)學(xué)生的思維能力。
(1)通過用參數(shù)求解不等式,培養(yǎng)學(xué)生的思維縝密和邏輯思維。
(2)通過多解、多解、多證分析幾何和不等式,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過推廣和普及不等式培養(yǎng)學(xué)生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力。(5)通過解析幾何的概念教學(xué),培養(yǎng)學(xué)生的正向思維和逆向思維能力。
(6)通過典型例題的不同思路分析,培養(yǎng)思維的靈活性是學(xué)生掌握思維轉(zhuǎn)化的途徑。
4.培養(yǎng)學(xué)生的觀察能力。
(1)在比較和鑒別中,提高觀察的準(zhǔn)確性和完整性。(2)通過對人格特征的分析研究,提高觀察深度。(3)知識要求
1、掌握不等式的`概念、性質(zhì)和證明不等式的方法,不等式的解法;
2.通過直線和圓的教學(xué),學(xué)生可以了解解析幾何的基本思想,掌握
(2)難點1。不等式的解包括絕對值和不等式的證明。2.角度公式、點到直線距離公式的推導(dǎo)及簡單線性規(guī)劃的求解。
3.用坐標(biāo)法研究幾何問題,尋找曲線方程的一般方法。
五.教學(xué)措施
1.在教學(xué)中,要將傳授知識與培養(yǎng)能力相結(jié)合,充分調(diào)動學(xué)生的學(xué)習(xí)主動性,培養(yǎng)學(xué)生的概括能力,使學(xué)生掌握數(shù)學(xué)的基本方法和技能。
2.堅持與高三接觸,踏實面對高考,以數(shù)學(xué)五大思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學(xué)生學(xué)習(xí)負擔(dān)。
3.加強教育教學(xué)研究,堅持學(xué)生主體性原則,循序漸進,啟發(fā)性。研究并采用基于“發(fā)現(xiàn)教學(xué)模式”的教學(xué)方法,全面提高教學(xué)質(zhì)量。
4.積極參與和組織集體備課,共同學(xué)習(xí),努力提高教學(xué)質(zhì)量
5.堅持聽同齡人講課,取長補短。互相學(xué)習(xí),共同進步。
6.堅持學(xué)習(xí)方法,加強個別輔導(dǎo)(差生和優(yōu)等生),提高全體學(xué)生的整體數(shù)學(xué)水平,培養(yǎng)尖子生。
7.加強數(shù)學(xué)研究性課程的教學(xué)和研究指導(dǎo),培養(yǎng)知識的實踐能力。
第六,課表
這學(xué)期有81個課時。1.不等式18課時
2.直線圓方程25課時
3.圓錐曲線20課時
4.研究班18小時
高二數(shù)學(xué)教學(xué)計劃11
一、指導(dǎo)思想
以培養(yǎng)創(chuàng)新型人材為目標(biāo),以聯(lián)合辦學(xué)為契機,深入鉆研教材,靠集體智慧處理教研、教改資源及多媒體信息,根據(jù)我校實際,合理運用現(xiàn)代教學(xué)手段、技術(shù),提高課堂效率。
二、目標(biāo)要求
1.深入鉆練教材,在借鑒她校課件基礎(chǔ)上,結(jié)合所教學(xué)生實際,確定好每節(jié)課所教內(nèi)容,及所采用的教學(xué)手段、方法。
2.本期還要幫助學(xué)生搞好《數(shù)學(xué)》必修內(nèi)容的復(fù)習(xí),一是為學(xué)生學(xué)業(yè)水平檢測作準(zhǔn)備,二是為高三復(fù)習(xí)打基礎(chǔ)。
3.本期的專題選講務(wù)求實效。
4.繼續(xù)培養(yǎng)學(xué)生的學(xué)習(xí)興趣,幫助學(xué)生解決好學(xué)習(xí)教學(xué)中的困難,提高學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力。
5.本期重點培養(yǎng)和提升學(xué)生的`抽象思維、概括、歸納、整理、類比、相互轉(zhuǎn)化、數(shù)形結(jié)合等能力,提高學(xué)生解題能力。
三、教學(xué)措施:
一、認真落實,搞好集體備課。每周至少進行一次集體備課,每位老師都要提前一周進行單元式的備課,集體備課時,由一名老師作主要發(fā)言人,對下一周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學(xué)方法等。在星期一的集合備課中,主要是對上周備課中的情況作補充。每次備課都要用一定的時間交流一下前一段的教學(xué)情況,進度、學(xué)生掌握情況等。
二、詳細計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料是《高中數(shù)學(xué)新新學(xué)案》,要求學(xué)生按教學(xué)進度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。每周以內(nèi)容滾動式編一份練習(xí)試卷,星期五發(fā)給學(xué)生帶回家完成,星期一交,老師要進行批改,存在的普遍性問題最好安排時間講評。試題量控制為10道選擇題(4舊6新)、4道填空題(1舊3新)、4道解答題。
三、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。本學(xué)期第二課堂與數(shù)學(xué)競賽準(zhǔn)備班繼續(xù)分開進行輔導(dǎo)。平常意義上的第二課堂輔導(dǎo)學(xué)生,主要是以興趣班的形式,以復(fù)習(xí)鞏固課堂教學(xué)的同步內(nèi)容為主,一般只選用常規(guī)題為例題和練習(xí),難度低于高考接近高考,用專題講授為主要形式開展輔導(dǎo)工作。
四、加強輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要,所以每位老師必須重視搞好輔導(dǎo)工作。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。
高二數(shù)學(xué)教學(xué)計劃12
一、指導(dǎo)思想
1、培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力、使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力、
2、根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神、
3、使學(xué)生具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀、
二、目的要求
1、深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系和網(wǎng)絡(luò)結(jié)構(gòu),細致領(lǐng)會教材改革的精髓,把握通性通法,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響、
2、因材施教,以學(xué)生為學(xué)習(xí)的主體,構(gòu)建新的認知體系,營造有利于學(xué)生學(xué)習(xí)的氛圍、
3、加強課堂教學(xué)研究,科學(xué)設(shè)計教學(xué)方法,扎實有效的提高課堂教學(xué)效果,全面提高數(shù)學(xué)教學(xué)質(zhì)量、
三、具體措施
1、不孤立記憶和認識各個知識點,而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過程中尋求其內(nèi)在聯(lián)系,達到理解層次,注意知識塊的復(fù)習(xí),構(gòu)建知識網(wǎng)路、注重基礎(chǔ)知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數(shù)學(xué)語言的表達形式,推力論證要思路清晰、整體完整、
2、學(xué)會分析,首先是閱讀理解,側(cè)重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側(cè)重于經(jīng)驗及教訓(xùn)的總結(jié),重視常見題型及通法通解、
3、以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓(xùn)練,規(guī)范解題,養(yǎng)成:想明白,寫清楚,算準(zhǔn)確的習(xí)慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結(jié)果的準(zhǔn)確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數(shù)學(xué)思想和數(shù)學(xué)方法的應(yīng)用、
4、協(xié)調(diào)好講、練、評、輔之間的關(guān)系,追求數(shù)學(xué)復(fù)習(xí)的最佳效果,注重實效,努力提高復(fù)習(xí)教學(xué)的效率和效益;精心設(shè)計教學(xué),做到精講精練,不加重學(xué)生的負擔(dān),避免“題海戰(zhàn)” ,精心準(zhǔn)備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關(guān)鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學(xué)生的錯誤調(diào)整復(fù)習(xí)策略,使復(fù)習(xí)更加有重點、針對性,加快教學(xué)節(jié)奏,提高教學(xué)效率、
5、周密計劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學(xué),使學(xué)生在解題探究中提高能力、
6、多從“貼近教材、貼近學(xué)生、貼近實際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問題,對學(xué)生進行有計劃、針對性強的訓(xùn)練,多給學(xué)生鍛煉各種能力的`機會,從而達到提升學(xué)生數(shù)學(xué)綜合能力之目的、不脫離基礎(chǔ)知識來講學(xué)生的能力,基礎(chǔ)扎實的學(xué)生不一定能力 強、教學(xué)中,不斷地將基礎(chǔ)知識運用于數(shù)學(xué)問題的解決中,努力提高學(xué)生的學(xué)科綜合能力、
高二數(shù)學(xué)學(xué)習(xí)方法
。1)制定計劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計劃是推動我們主動學(xué)習(xí)和克服困難的內(nèi)在動力。計劃先由老師指導(dǎo)督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學(xué)習(xí)意志。
。2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動權(quán)。預(yù)習(xí)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
。3)上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
。4)及時復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會”。
。5)獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學(xué)知識由“會”到“熟”。
。6)解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考。實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。
(7)系統(tǒng)小結(jié)是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學(xué)知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。
。8)課外學(xué)習(xí)包括閱讀課外書籍與報刊,課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
高二數(shù)學(xué)教學(xué)計劃13
根據(jù)本學(xué)期進度計劃,在教參的課時分配的基礎(chǔ)上,除去復(fù)習(xí)所用的課時,第九周上結(jié)束7.5曲線和方程后進行期中考試,中期考試后從§7.6圓的方程上起,到第十六周結(jié)束新課,第十七、十八周上一點下學(xué)期的內(nèi)容,十九、二十周進行期末復(fù)習(xí)與考試。
教學(xué)中估計困難不少:學(xué)生人多,數(shù)學(xué)基礎(chǔ)的差異程度加大,為教學(xué)的因材施教增加了難度。與其他學(xué)校相比, 數(shù)學(xué)教學(xué) 時間相對較少,練習(xí)與講評難以做到充分。
為了能順利完成今年的教學(xué)任務(wù),準(zhǔn)備采取以下教學(xué)措施。
一、認真落實,搞好集體備課。
每周至少進行一次集體備課。每次備課都要用一定的時間交流一下前一段的教學(xué)情況,進度、學(xué)生掌握情況等。通過全組的團結(jié)合作,應(yīng)該可以順利完成教學(xué)任務(wù)。
二、詳細計劃,保證練習(xí)質(zhì)量。
老師要安排一定量的`習(xí)題并進行及時進行檢查。存在的普遍性問題最好安排時間講評。
三、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。
平常意義上的第二課堂輔導(dǎo)學(xué)生,主要是以興趣班的形式,以復(fù)習(xí)鞏固課堂教學(xué)的同步內(nèi)容為主,一般只選用常規(guī)題為例題和練習(xí),難度低于高考接近高考,用專題講授為主要形式開展輔導(dǎo)工作。
四、加強輔導(dǎo)工作。
對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要,所以每位老師必須重視搞好輔導(dǎo)工作。
高二數(shù)學(xué)教學(xué)計劃14
教學(xué)目標(biāo);
。1)了解頻數(shù)、頻率的概念,了解全距、組距的概念;
。2)能正確地編制頻率分布表;會用樣本頻率分布去估計總體分布;
。3)通過對現(xiàn)實生活的探究,感知應(yīng)用數(shù)學(xué)知識解決問題的方法,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法、
教學(xué)重點:正確地編制頻率分布表、
教學(xué)難點;會用樣本頻率分布去估計總體分布
內(nèi)容分析
1、在統(tǒng)計中,用樣本的有關(guān)情況估計總體的相應(yīng)情況大體上有兩類:一是用樣本的頻率分布去估計總體分布;二是用樣本的某種數(shù)字特征去估計總體相應(yīng)數(shù)字特征。本節(jié)課解決前者的'問題。
2、討論樣本頻率分布的內(nèi)容在初中”統(tǒng)計初步”中進行了簡要的介紹,由于很長時間沒有接觸這方面知識,因此有必要通過一例重溫頻率分布有關(guān)知識,突出掌握解決問題的步驟,使學(xué)生了解處理數(shù)據(jù)的具體方法。
3、介紹歷史上從事拋擲硬幣的幾個案例,學(xué)習(xí)科學(xué)家對真理執(zhí)著追求的精神。
4、頻率分布的條形圖與直方圖是有區(qū)別。條形圖是用高度來表示頻率,直方圖是用面積來表示頻率。
教學(xué)過程
1、引入新課
。1)介紹對“拋擲硬幣”試驗進行研究的科學(xué)家。
(2)本次試驗結(jié)果。
。3)畫出頻率分布的條形圖。
。4)注意點:①各直方長條的寬度要相同;②相鄰長條之間的間隔要適當(dāng)。
(5)結(jié)論:當(dāng)試驗次數(shù)無限增大時,兩種試驗結(jié)果的頻率大致相同。
2、總體分布
精確地反映了總體取值的概率分布規(guī)律。研究概率分布往往可以研究其頻數(shù)分布、頻率分布,及累積頻數(shù)分布和累積頻率分布。后者作為閱讀教科書內(nèi)容。
3、復(fù)習(xí)頻率分布
(演示)問題:有一個容量為20的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5
[21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5
(1)列出樣本的頻率分布表和畫出頻率分布直方圖。
。2)頻率直方圖的橫軸表示___________;縱軸表示___________。頻率分布直方圖中,各小矩形的面積等于___________,各小矩形面積之和等于___________。頻率直方圖的主要作用是___________。
講解例題
為了了解學(xué)生身體的發(fā)育情況,對某重點中學(xué)年滿17歲的60名男同學(xué)的身高進行了測量,結(jié)果如下:
身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68
人數(shù) 2 1 4 2 4 2 7 6
身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77
人數(shù) 8 7 4 3 2 1 2 1 1
(1)根據(jù)上表,估計這所重點中學(xué)年滿17歲的男學(xué)生中,身高下低于1、65m且不高于1、71m的約占多少?不低于1、63m的約占多少?
。2)畫出頻率分布直方圖,說出該校年滿17歲的男同學(xué)中身高在哪個范圍內(nèi)的人數(shù)所占比例最大?如果該校年滿17歲的男同學(xué)恰好是300人,那么在這個范圍內(nèi)的人數(shù)估計約有多少人?
。ㄟ^程略)
注意點:主要包括兩部分:前面重點講解如何根據(jù)數(shù)據(jù)畫出頻率分布的直方圖,后面重點講解如何根據(jù)樣本的頻率分布去估計總體的相關(guān)情況。
。╝)計算最大值與最小值的差
(b)確定組距與組數(shù)。
組距的確定應(yīng)根據(jù)數(shù)據(jù)總體情況,自主選擇。本題將組距定為2較為合適,因而組數(shù)為11。
。╟)決定分點。
分點要比數(shù)據(jù)多一位小數(shù),便于分組。分組區(qū)間采用左閉右開。
。╠)列出頻率分布表(見教科書)。
。╡)畫出頻率分布圖(見教科書)。
4、得到樣本頻率后,應(yīng)對總體的相應(yīng)情況進行估計
5、課堂練習(xí)
教科書習(xí)題 1、2第2題。
板書設(shè)計
一、概念理解 二、應(yīng)用
1、頻數(shù)、頻率的容量的關(guān)系 例
2、頻率的取值范圍 三、小結(jié)
3、分布頻率分布表
四、作業(yè)
高二數(shù)學(xué)教學(xué)計劃15
本章是高考命題的主體內(nèi)容之一,應(yīng)切實進行全面、深入地復(fù)習(xí),并在此基礎(chǔ)上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數(shù)列計算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項公式、前 項和公式及其性質(zhì)熟練地進行計算,是高考命題重點考查的內(nèi)容.(3)解答有關(guān)數(shù)列問題時,經(jīng)常要運用各種數(shù)學(xué)思想.善于使用各種數(shù)學(xué)思想解答數(shù)列題,是我們復(fù)習(xí)應(yīng)達到的目標(biāo). ①函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.
②分類討論思想:用等比數(shù)列求和公式應(yīng)分為 及 ;已知 求 時,也要進行分類;
、壅w思想:在解數(shù)列問題時,應(yīng)注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
。4)在解答有關(guān)的數(shù)列應(yīng)用題時,要認真地進行分析,將實際問題抽象化,轉(zhuǎn)化為數(shù)學(xué)問題,再利用有關(guān)數(shù)列知識和方法來解決.解答此類應(yīng)用題是數(shù)學(xué)能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關(guān)的等比數(shù)列的第幾項不要弄錯.
一、基本概念:
1、 數(shù)列的定義及表示方法:
2、 數(shù)列的項與項數(shù):
3、 有窮數(shù)列與無窮數(shù)列:
4、 遞增(減)、擺動、循環(huán)數(shù)列:
5、 數(shù)列的通項公式an:
6、 數(shù)列的前n項和公式Sn:
7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):
8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):
二、基本公式:
9、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=
10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。
11、等差數(shù)列的前n項和公式:Sn= Sn= Sn=
當(dāng)d0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a10),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an0)
13、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的.正比例式);
當(dāng)q1時,Sn= Sn=
三、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數(shù)列。
15、等差數(shù)列中,若m+n=p+q,則
16、等比數(shù)列中,若m+n=p+q,則
17、等比數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數(shù)列。
18、兩個等差數(shù)列與的和差的數(shù)列、仍為等差數(shù)列。
19、兩個等比數(shù)列與的積、商、倒數(shù)組成的數(shù)列
、 、 仍為等比數(shù)列。
20、等差數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。
22、三個數(shù)成等差的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
23、三個數(shù)成等比的設(shè)法:a/q,a,aq;
四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3
24、為等差數(shù)列,則 (c0)是等比數(shù)列。
25、(bn0)是等比數(shù)列,則 (c0且c 1) 是等差數(shù)列。
四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。
26、分組法求數(shù)列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數(shù)列的最大、最小項的方法:
、 an+1-an= 如an= -2n2+29n-3
、 an=f(n) 研究函數(shù)f(n)的增減性
31、在等差數(shù)列 中,有關(guān)Sn 的最值問題常用鄰項變號法求解:
(1)當(dāng) 0時,滿足 的項數(shù)m使得 取最大值.
(2)當(dāng) 0時,滿足 的項數(shù)m使得 取最小值。
在解含絕對值的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應(yīng)用。
以上就是高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)數(shù)列的所有內(nèi)容,希望對大家有所幫助!
【高二數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
高二數(shù)學(xué)教學(xué)計劃(優(yōu)選)07-23
高二數(shù)學(xué)教學(xué)計劃14篇06-20
高二數(shù)學(xué)教學(xué)計劃(精選16篇)08-31
高二數(shù)學(xué)教學(xué)計劃精選(15篇)06-23
高二數(shù)學(xué)教學(xué)計劃(15篇)10-27
高二數(shù)學(xué)教學(xué)計劃通用15篇09-14
高二數(shù)學(xué)教學(xué)計劃集錦15篇09-05