亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

《余弦定理》說課稿

時間:2022-02-09 11:59:01 說課稿 我要投稿
  • 相關(guān)推薦

關(guān)于《余弦定理》說課稿范文

  作為一無名無私奉獻的教育工作者,編寫說課稿是必不可少的,編寫說課稿助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量?靵韰⒖颊f課稿是怎么寫的吧!下面是小編精心整理的關(guān)于《余弦定理》說課稿范文,歡迎大家分享。

關(guān)于《余弦定理》說課稿范文

  《余弦定理》說課稿1

  大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。

  一、教材分析

  本節(jié)知識是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,在實際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。并且在探索建立余弦定理時還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

  ①理解掌握余弦定理,能正確使用定理。

 、谂囵B(yǎng)學(xué)生教形結(jié)合分析問題的能力。

 、叟囵B(yǎng)學(xué)生嚴謹?shù)耐评硭季S和良好的審美能力。

  教學(xué)重點:定理的探究及應(yīng)用。

  教學(xué)難點:定理的。探究及理解。

  二、學(xué)情分析

  對于職業(yè)高中的高一學(xué)生,雖然知識經(jīng)驗并不豐富,但他們的智利發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

  三、教法分析

  根據(jù)教材的內(nèi)容和編排的特點,為更有效地突出重點,突破難點,以學(xué)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,讓學(xué)生的思維由問題開始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的`能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過例題和練習(xí)來突破難點,注重知識的形成過程,突出教學(xué)理念的創(chuàng)新。

  四、學(xué)法指導(dǎo):

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  五、教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘。

  第二:實踐探究,形成定理,大約用25分鐘。

  第三:應(yīng)用定理,拓展反思,大約用13分鐘。

  (一)創(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點,說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。

  (二)邏輯推理,證明猜想

  提出問題,探究問題,形成定理,回顧分析,形成結(jié)論,再認識結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對比特殊,認知推廣。落實定理,構(gòu)建定理應(yīng)用體系。

  (三)歸納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字敘述余弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

 。ㄋ模┲v解例題,鞏固定理

  1、審題確定條件。

  2、明確求解任務(wù)。

  3、確定使用公式。

  4、科學(xué)求解過程。

  (五)課堂練習(xí),提高鞏固

  1。在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm

 。2)A=60°,B=45°,c=20cm

  2。在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°

 。2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

 。┬〗Y(jié)反思,提高認識

  通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

  1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.兩種表達。

  3.兩類問題。

  (七)思維拓展,自主探究

  利用余弦定理判斷三角形形狀,即余弦定理的推論。

  《余弦定理》說課稿2

  各位評委老師,下午好!今天我說課的題目是余弦定理,說課的內(nèi)容為余弦定理第二課時,下面我將從說教材、說學(xué)情、說教法和學(xué)法、說教學(xué)過程、說板書設(shè)計這四個方面來對本課進行詳細說明:

  一、說教材

 。ㄒ唬┙滩牡匚慌c作用

  《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學(xué)習(xí)了正弦定理以及必修4中的任意角、誘導(dǎo)公式以及恒等變換,為后面學(xué)習(xí)三角函數(shù)奠定了基礎(chǔ),因此本節(jié)課有承上啟下的作用。本節(jié)課是解決有關(guān)斜三角形問題以及應(yīng)用問題的一個重要定理,它將三角形的邊和角有機地聯(lián)系起來,實現(xiàn)了"邊"與"角"的互化,從而使"三角"與"幾何"產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量提供了理論依據(jù),同時也為判斷三角形形狀,證明三角形中的有關(guān)等式提供了重要依據(jù)。

  (二)教學(xué)目標(biāo)

  根據(jù)上述教材內(nèi)容分析以及新課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認知結(jié)構(gòu),心理特征及原有知識水平,我將本課的教學(xué)目標(biāo)定為:

  ⒈知識與技能:

  掌握余弦定理的內(nèi)容及公式;能初步運用余弦定理解決一些斜三角形

 、策^程與方法:

  在探究學(xué)習(xí)的過程中,認識到余弦定理可以解決某些與測量和幾何計算有關(guān)的實際問題,幫助學(xué)生提高運用有關(guān)知識解決實際問題的能力。

 、城楦、態(tài)度與價值觀:

  培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識;在運用余弦定理的過程中,讓學(xué)生逐步養(yǎng)成實事求是,扎實嚴謹?shù)目茖W(xué)態(tài)度,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問題,認識世界;通過本節(jié)的運用實踐,體會數(shù)學(xué)的科學(xué)價值,應(yīng)用價值;

  (三)本節(jié)課的重難點

  教學(xué)重點是:運用余弦定理探求任意三角形的邊角關(guān)系,解決與之有關(guān)的計算問題,運用余弦定理解決一些與測量以及幾何計算有關(guān)的實際問題。

  教學(xué)難點是:靈活運用余弦定理解決相關(guān)的實際問題。

  教學(xué)關(guān)鍵是:熟練掌握并靈活應(yīng)用余弦定理解決相關(guān)的實際問題。

  下面為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>

  二、說學(xué)情

  從知識層面上看,高中學(xué)生通過前一節(jié)課的學(xué)習(xí)已經(jīng)掌握了余弦定理及其推導(dǎo)過程;從能力層面上看,學(xué)生初步掌握運用余弦定理解決一些簡單的斜三角形問題的技能;從情感層面上看,學(xué)生對教學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性,但在探究問題的能力以及合作交流等方面的發(fā)展不夠均衡。

  三、說教法和學(xué)法

  貫徹的指導(dǎo)思想是把"學(xué)習(xí)的主動權(quán)還給學(xué)生",倡導(dǎo)"自主、合作、探究"的學(xué)習(xí)方式。讓學(xué)生自主探索學(xué)會分析問題,解決問題。

  四、說教學(xué)過程

  下面為了完成教學(xué)目標(biāo),解決教學(xué)重點,突破教學(xué)難點,課堂教學(xué)我準(zhǔn)備按以下五個環(huán)節(jié)展開:

  環(huán)節(jié)⒈復(fù)習(xí)引入

  由于本節(jié)課是余弦定理的第一課時,因此先領(lǐng)著學(xué)生回顧復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容,采用提問的方式,找同學(xué)回答余弦定理的內(nèi)容及公式,并且讓學(xué)生回想公式推導(dǎo)的思路和方法,這樣一來可以檢驗學(xué)生對所學(xué)知識的掌握情況,二來也為新課作準(zhǔn)備。

  環(huán)節(jié)⒉應(yīng)用舉例

  在本環(huán)節(jié)中,我將給出兩道典型例題

  △ABC的頂點為A(6,5),B(—2,8)和C(4,1),求(精確到)。

  已知三點A(1,3),B(—2,2),C(0,—3),求△ABC各內(nèi)角的大小。

  通過利用余弦定理解斜三角形的思想,來對這兩道例題進行分析和講解;本環(huán)節(jié)的.目的在于通過典型例題的解答,鞏固學(xué)生所學(xué)的知識,進一步深化對于余弦定理的認識和理解,提高學(xué)生的理解能力和解題計算能力。

  環(huán)節(jié)⒊練習(xí)反饋

  練習(xí)B組題,1、2、3;習(xí)題1—1A組,1、2、3

  在本環(huán)節(jié)中,我將找學(xué)生到黑板做題,期間巡視下面同學(xué)的做題情況,加以糾正和講解;通過解決書后練習(xí)題,鞏固學(xué)生當(dāng)堂所學(xué)知識,同時教師也可以及時了解學(xué)生的掌握情況,以便及時調(diào)整自己的教學(xué)步調(diào)。

  環(huán)節(jié)⒋歸納小結(jié)

  在本環(huán)節(jié)中,我將采用師生共同總結(jié)—交流—完善的方式,首先讓學(xué)生自己總結(jié)出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結(jié)出余弦定理可以解決的兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個角。本環(huán)節(jié)的目的在于引導(dǎo)學(xué)生學(xué)會自己總結(jié);讓學(xué)生進一步體會知識的形成、發(fā)展、完善的過程。

  環(huán)節(jié)⒌課后作業(yè)

  必做題:習(xí)題1—1A組,6、7;習(xí)題1—1B組,2、3、4、5

  選做題:習(xí)題1—1B組7,8,9。

  基于因材施教的原則,在根據(jù)不同層次的學(xué)生情況,把作業(yè)分為必做題和選做題,必做題要求所有學(xué)生全部完成,選做題要求學(xué)有余力的學(xué)生完成,使不同程度的學(xué)生都有所提高。本環(huán)節(jié)的目的是讓學(xué)生進一步鞏固和深化所學(xué)的知識,培養(yǎng)學(xué)生的自主探究能力。

  五、說板書

  在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。

  《余弦定理》說課稿3

  一、說教材

  《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學(xué)第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:

  1、已知兩邊及其夾角,求第三邊和其他兩個角。

  2、已知三邊求三個內(nèi)角;

  3、判斷三角形的形狀。以及相關(guān)的證明題。

  二、說教學(xué)思路

  本著數(shù)學(xué)與專業(yè)有機結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計了與機械相關(guān)聯(lián)并具有愛國主題的二個任務(wù),通過任務(wù)驅(qū)動法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識的.強烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時,強化了數(shù)學(xué)與專業(yè)的有機結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識運用于自身專業(yè)中的能力。同時通過任務(wù)驅(qū)動,培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實際實際問題的能力。因為所設(shè)計的兩個任務(wù)具有愛國主義題材,學(xué)生在完成知識學(xué)習(xí)的同時,也極大的激發(fā)了愛國主義精神。

  三、說教法

  在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。

  1、任務(wù)驅(qū)動法

  教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對問題進行思考。在研究過程中,激發(fā)學(xué)生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

  2、引導(dǎo)發(fā)現(xiàn)法、觀察法

  通過對勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

  3、歸納總結(jié)法

  學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

  4、講練結(jié)合法

  講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對所學(xué)定理進行認知,及時鞏固所學(xué)的知識,鍛煉了解決實際問題的能力,發(fā)揮出學(xué)生的主觀能動性,成為學(xué)習(xí)的主體。

  四、說學(xué)法

  學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

  五、教學(xué)目標(biāo)

  (一)知識目標(biāo)

  1、使學(xué)生掌握余弦定理及其證明。

  2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

 。ǘ┠芰δ繕(biāo)

  1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

  2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

  3、通過對余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識遷移能力和建模意識,及合作學(xué)習(xí)的意識。

 。ㄈ┑掠繕(biāo)

  1、培養(yǎng)學(xué)生的愛國主義精神、及團結(jié)、協(xié)作精神。

  2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

  六、教學(xué)重點

  教學(xué)重點是余弦定理及應(yīng)用余弦定理解斜三角形;

  七、教學(xué)難點

  分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。

       八、教學(xué)過程

  教學(xué)中注重突出重點、突破難點,從五個層次進行教學(xué)。

  創(chuàng)設(shè)情境、任務(wù)驅(qū)動;

  引導(dǎo)探究、發(fā)現(xiàn)定理;

  完成任務(wù)、應(yīng)用遷移;

  拓展升華、交流反思;

  九、說過程。

 。ㄒ唬⿲(dǎo)入

  1、教師創(chuàng)設(shè)情境設(shè)置二個任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務(wù),達到掌握余弦定理并學(xué)會應(yīng)用的目標(biāo)。

  2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

 。ǘ┬抡n

  3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形

  經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

  4、解決二個任務(wù)

  5、操作演練,鞏固提高。

  6、小結(jié):

  通過學(xué)生口答方式小結(jié),讓學(xué)生強化記憶,分清重點,深化對余弦定理的理解。

  7、作業(yè):

  分層布置作業(yè),根據(jù)不同層次學(xué)生將作業(yè)分為必做題和選做題。使不同程度的學(xué)生都有所提高

  十、板書設(shè)計

  板書是課堂教學(xué)重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學(xué)生加深印象,理清思路。

  十一、課后反思

  在教學(xué)設(shè)計上,采用任務(wù)驅(qū)動,教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識點學(xué)習(xí)則循序漸進,符合學(xué)生的認知特點。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

【《余弦定理》說課稿】相關(guān)文章:

《散步》說課稿03-28

《將心比心》說課稿03-28

《松鼠》說課稿03-29

《家》說課稿03-29

《觀潮》說課稿04-07

《風(fēng)箏》說課稿04-17

《春》說課稿04-18

《微笑》說課稿04-18

詠柳說課稿05-16

琥珀說課稿05-12